【題目】已知,.
(1)若直線與圓:相切,求被圓:所截得弦長(zhǎng)取最小值時(shí)直線的斜率;
(2)時(shí),:表示圓,問(wèn)是否存在一條直線,使得它和所有的圓都沒(méi)有公共點(diǎn)?如果存在,求出直線,若不存在,說(shuō)明理由;
(3)若滿(mǎn)足不等式和等式的點(diǎn)集是一條線段,求取值范圍.
【答案】(1);(2)存在,:;(3).
【解析】
(1)畫(huà)出圖像分析可得, 直線與直線垂直時(shí)被圓:所截得弦長(zhǎng)取最小值.
再根據(jù)垂直的直線斜率之積為-1求解即可.
(2)當(dāng)時(shí)代入有
,即又,故猜測(cè)存在一條直線,使得它和所有的圓都沒(méi)有公共點(diǎn),再證明即可.
(3) 的解集為或兩條直線, 為兩圓之間的部分,數(shù)形結(jié)合列式求解即可.
(1)由,
即圓心,半徑
即圓心,半徑
因?yàn)楫?dāng)被圓:所截得弦長(zhǎng)取最小值時(shí),圓心到直線的距離最大.
又到的距離,當(dāng)且僅當(dāng)直線與直線垂直時(shí)取得為最大值,此時(shí)斜率,故直線斜率
(2) 存在,:和所有的圓都沒(méi)有公共點(diǎn).
證明:由題:,即
,
變形得
即,
故:
若與有交點(diǎn),則
有解.上式減去倍的下式有:
有解.
即圓與直線有交點(diǎn),圓半徑
但圓心到距離 .
故圓與直線無(wú)交點(diǎn).
即和所有的圓都沒(méi)有公共點(diǎn).
(3)由題得的解集為或兩條直線,得且
即為兩圓 與之間的部分.
又若不等式和等式的點(diǎn)集是一條線段,則需注意臨界條件.
當(dāng)與圓相切時(shí),或,
當(dāng)與圓相切時(shí),或
又因?yàn)?/span>到所求的所有的距離都大于半徑,故無(wú)需考慮圓對(duì)形成線段的影響.
故
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,底面是正方形,,.
(1)證明:平面;
(2)若是的中點(diǎn),是棱上一點(diǎn),且平面,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】橢圓的焦距是,長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)3倍,任作斜率為的直線與橢圓交于兩點(diǎn)(如圖所示),且點(diǎn)在直線的左上方.
(1)求橢圓的方程;
(2)若,求的面積;
(3)證明:的內(nèi)切圓的圓心在一條定直線上。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,欲在一四邊形花壇內(nèi)挖一個(gè)等腰三角形的水池,且,已知四邊形中,是等腰直角三角形,米,是等腰三角形,,的大小為,要求的三個(gè)頂點(diǎn)在花壇的邊緣上(即在四邊形的邊上),設(shè)點(diǎn)到水池底邊的距離為,水池的面積為平方米.
(1)求的長(zhǎng);
(2)試將表示成關(guān)于的函數(shù),并求出的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),,
(1)若函數(shù)f(x)有兩個(gè)零點(diǎn),求實(shí)數(shù)a的取值范圍;
(2)若a=3,且對(duì)任意的x1∈[-1,2],總存在,使g(x1)-f(x2)=0成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工廠產(chǎn)生的廢氣經(jīng)過(guò)過(guò)濾后排放,在過(guò)濾過(guò)程中,污染物的數(shù)量p(單位:毫克/升)不斷減少,已知p與時(shí)間t(單位:小時(shí))滿(mǎn)足p(t)=,其中p0為t=0時(shí)的污染物數(shù)量.又測(cè)得當(dāng)t∈[0,30]時(shí),污染物數(shù)量的變化率是-10ln 2,則p(60)=( )
A.150毫克/升B.300毫克/升
C.150ln 2毫克/升D.300ln 2毫克/升
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù).
(1)若是函數(shù)的一個(gè)極值點(diǎn),試求的單調(diào)區(qū)間;
(2)若且,是否存在實(shí)數(shù)a,使得在區(qū)間上的最大值為4?若存在,求出實(shí)數(shù)a的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某地要建造一個(gè)邊長(zhǎng)為2(單位:)的正方形市民休閑公園,將其中的區(qū)域開(kāi)挖成一個(gè)池塘,如圖建立平面直角坐標(biāo)系后,點(diǎn)的坐標(biāo)為,曲線是函數(shù)圖像的一部分,過(guò)邊上一點(diǎn)在區(qū)域內(nèi)作一次函數(shù)()的圖像,與線段交于點(diǎn)(點(diǎn)不與點(diǎn)重合),且線段與曲線有且只有一個(gè)公共點(diǎn),四邊形為綠化風(fēng)景區(qū).
(1)求證:;
(2)設(shè)點(diǎn)的橫坐標(biāo)為,
①用表示、兩點(diǎn)的坐標(biāo);
②將四邊形的面積表示成關(guān)于的函數(shù),并求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知某公司生產(chǎn)某款手機(jī)的年固定成本為40萬(wàn)元,每生產(chǎn)1萬(wàn)只還需另投入16萬(wàn)元.設(shè)該公司一年內(nèi)共生產(chǎn)該款手機(jī)萬(wàn)只并全部銷(xiāo)售完,每萬(wàn)只的銷(xiāo)售收入為萬(wàn)元,且
(1)寫(xiě)出年利潤(rùn)(萬(wàn)元)關(guān)于年產(chǎn)量(萬(wàn)只)的函數(shù)解析式;
(2)當(dāng)年產(chǎn)量為多少萬(wàn)只時(shí),該公司在該款手機(jī)的生產(chǎn)中所獲得的利潤(rùn)最大?并求出最大利潤(rùn).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com