函數(shù)f(x)定義域?yàn)镽+,對(duì)任意x,y∈R+都有f(xy)=f(x)+f(y),又f(8)=3,則f(數(shù)學(xué)公式)=


  1. A.
    數(shù)學(xué)公式
  2. B.
    1
  3. C.
    -數(shù)學(xué)公式
  4. D.
    數(shù)學(xué)公式
A
分析:根據(jù)函數(shù)f(x)定義域?yàn)镽+,對(duì)任意x,y∈R+都有f(xy)=f(x)+f(y),可把f(8)逐步變形,最后用f(
表示,就可求出f()的值.
解答:∵函數(shù)f(x),對(duì)任意x,y∈R+都有f(xy)=f(x)+f(y),
∴且f(8)=f(2)+f(4)=f(2)+f(2)+f(2)=3f(2)=6f()=3
∴f()=
故選A
點(diǎn)評(píng):本題考查了抽象函數(shù)的性質(zhì),做題時(shí)要善于發(fā)現(xiàn)規(guī)律.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)定義域?yàn)镽+,且滿(mǎn)足條件f(x)=f(
1x
)•lgx+1,求f(x)的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)定義域?yàn)閷?shí)數(shù)R,對(duì)任意的實(shí)數(shù)x、y,都有f(x+y)=f(x)+f(y),又當(dāng)x>0時(shí),f(x)<0且f(2)=-1.
(1)判斷f(x)的奇偶性.
(2)判斷f(x)在R上的單調(diào)性.
(3)求f(x)在[-6,6]的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)定義域?yàn)椋?,+∞),且滿(mǎn)足2f(x)+f(
1
x
)=(2x-
1
x
)lnx

(Ⅰ)求f(x)解析式及最小值;
(Ⅱ)求證:?x∈(0,+∞),
x+1
ex
<1

(Ⅲ)設(shè)g(x)=
x+f(x)
xex
,h(x)=(x2+x)g′(x).求證::?x∈(0,+∞),h(x)<
4
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)定義域?yàn)镽,ab∈R總有
f(a)-f(b)a-b
>0(a≠b),若f(m+1)>f(2m),則實(shí)數(shù)m的取值范圍是
m<1
m<1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)定義域?yàn)镽,且圖象關(guān)于原點(diǎn)對(duì)稱(chēng).當(dāng)x>0時(shí),f(x)=x3-2.則函數(shù)f(x+2)的所有零點(diǎn)之和為
-6
-6

查看答案和解析>>

同步練習(xí)冊(cè)答案