如圖,直三棱柱ABC­A1B1C1中,AB=AC=1,AA1=2,∠B1A1C1=90°,D為BB1的中點(diǎn),則異面直線(xiàn)C1D與A1C所成角的余弦值為_(kāi)_________.

試題分析:求異面直線(xiàn)所成的角,關(guān)鍵是作出這個(gè)角,一般把異面直線(xiàn)的一條平移后與另一條相交,得到要求的角(當(dāng)然異面直線(xiàn)所成的角不大于)本題中我們就可以把向下平移到過(guò)點(diǎn)(實(shí)際作圖時(shí),是延長(zhǎng),使,則有,然后在中求出,就可得出題中要求的角.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在多面體ABCDEF中,底面ABCD是邊長(zhǎng)為2的菱形,,四邊形BDEF是矩形,平面BDEF⊥平面ABCD,BF=3,H是CF的中點(diǎn).

(Ⅰ)求證:AC⊥平面BDEF;
(Ⅱ)求直線(xiàn)DH與平面所成角的正弦值;
(Ⅲ)求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

[2013·銀川調(diào)研]已知正三棱柱ABC-A1B1C1的側(cè)棱長(zhǎng)與底面邊長(zhǎng)相等,則AB1與側(cè)面ACC1A1所成角的正弦值等于(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

空間四邊形ABCD中,AD=BC=2,E,F分別是AB,CD的中點(diǎn),EF=,則異面直線(xiàn)AD,BC所成的角為(     )
A.30° B.60°C.90°D.120°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,在正三棱柱ABC-A1B1C1中,AB=AA1=2,M、N分別是BB1和B1C1的中點(diǎn),則直線(xiàn)AM與CN所成角的余弦值等于(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

將一個(gè)水平放置的正方形繞直線(xiàn)向上轉(zhuǎn)動(dòng),再將所得正方形繞直線(xiàn)向上轉(zhuǎn)動(dòng),則平面與平面所成二面角的正弦值等于______

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,正四棱柱中,,則異面直線(xiàn)所成角的余弦值為(      )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知正四棱錐中,,則CD與平面所成角的正弦值等于(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,四棱錐P-ABCD中,底面ABCD是矩形,PD⊥平面ABCD,且PD=AD=1,AB=2,點(diǎn)E是AB上一點(diǎn),當(dāng)二面角P-EC-D的平面角為時(shí),AE=(  )
A.1B.C.2-D.2-

查看答案和解析>>

同步練習(xí)冊(cè)答案