【題目】如圖,在四棱錐中,底面ABCD是正方形,側面底面ABCD,且,設E,F分別為PC,BD的中點.
(1)求證:平面PAD;
(2)求直線EF與平面PBD所成角的正弦值.
科目:高中數學 來源: 題型:
【題目】2019年4月,甲乙兩校的學生參加了某考試機構舉行的大聯考,現從這兩校參加考試的學生數學成績在100分及以上的試卷中用系統(tǒng)抽樣的方法各抽取了20份試卷,并將這40份試卷的得分制作成如下的莖葉圖.
(1)試通過莖葉圖比較這40份試卷的兩校學生數學成績的中位數;
(2)若把數學成績不低于135分的記作數學成績優(yōu)秀,根據莖葉圖中的數據,判斷是否有90的把握認為數學成績在100分及以上的學生中數學成績是否優(yōu)秀與所在學校有關;
(3)若從這40名學生中選取數學成績在的學生,用分層抽樣的方式從甲乙兩校中抽取5人,再從這5人中隨機抽取3人分析其失分原因,求這3人中恰有2人是乙校學生的概率.
參考公式與臨界值表:,其中.
0.100 | 0.050 | 0.025 | 0.010 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,已知曲線C由圓弧C1和圓弧C2相接而成,兩相接點M,N均在直線x=5上.圓弧C1的圓心是坐標原點O,半徑為13;圓弧C2過點A(29,0).
(1)求圓弧C2的方程.
(2)曲線C上是否存在點P,滿足PA=PO?若存在,指出有幾個這樣的點;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知點在拋物線:的準線上,過點作拋物線的兩條切線,切點分別為,.
(1)證明:為定值;
(2)當點在軸上時,過點作直線,交拋物線于,兩點,滿足.問:直線是否恒過定點,若存在定點,求出點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數.
(1)當時,直線與相切,求的值;
(2)若函數在內有且只有一個零點,求此時函數的單調區(qū)間;
(3)當時,若函數在上的最大值和最小值的和為1,求實數的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓:的四個頂點圍成的四邊形的面積為,原點到直線的距離為.
(1)求橢圓的方程;
(2)已知定點,是否存在過的直線,使與橢圓交于,兩點,且以為直徑的圓過橢圓的左頂點?若存在,求出的方程:若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的兩個焦點分別為,離心率為,過的直線與橢圓交于兩點,且的周長為
(1)求橢圓的方程;
(2)若直線與橢圓分別交于兩點,且,試問點到直線的距離是否為定值,證明你的結論.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓:的右焦點為,上頂點為,直線的斜率為,且原點到直線的距離為.
(1)求橢圓的標準方程;
(2)若不經過點的直線:與橢圓交于兩點,且與圓相切.試探究的周長是否為定值,若是,求出定值;若不是,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com