精英家教網 > 高中數學 > 題目詳情

【題目】如圖,在四棱錐中,底面ABCD是正方形,側面底面ABCD,且,設E,F分別為PCBD的中點.

1)求證:平面PAD;

2)求直線EF與平面PBD所成角的正弦值.

【答案】1)見解析;(2

【解析】

1)利用線面平行的判定定理:連接,只需證明,利用中位線定理即可得證;

(2)取的中點,連接,建立如圖所示的空間直角坐標系,利用向量法求出直線與平面所成角的正弦值.

解:(1)證明:為平行四邊形,

連結,中點,中點,

,且平面,平面,

平面;

2)取的中點,連接,

的中點,,

又側面底面

底面;

建立如圖所示的空間直角坐標系,令正方形的邊長,則,,,,,

,

設面的法向量為

,

設直線與平面所成角為,則

故直線與平面所成角的正弦值為.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數若對于區(qū)間上的任意,都有,則實數的最小值是(  )

A. 20B. 18

C. 3D. 0

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】2019年4月,甲乙兩校的學生參加了某考試機構舉行的大聯考,現從這兩校參加考試的學生數學成績在100分及以上的試卷中用系統(tǒng)抽樣的方法各抽取了20份試卷,并將這40份試卷的得分制作成如下的莖葉圖.

(1)試通過莖葉圖比較這40份試卷的兩校學生數學成績的中位數;

(2)若把數學成績不低于135分的記作數學成績優(yōu)秀,根據莖葉圖中的數據,判斷是否有90的把握認為數學成績在100分及以上的學生中數學成績是否優(yōu)秀與所在學校有關;

(3)若從這40名學生中選取數學成績在的學生,用分層抽樣的方式從甲乙兩校中抽取5人,再從這5人中隨機抽取3人分析其失分原因,求這3人中恰有2人是乙校學生的概率.

參考公式與臨界值表:,其中

0.100

0.050

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy,已知曲線C由圓弧C1和圓弧C2相接而成,兩相接點M,N均在直線x=5.圓弧C1的圓心是坐標原點O,半徑為13;圓弧C2過點A(29,0).

(1)求圓弧C2的方程.

(2)曲線C上是否存在點P,滿足PA=PO?若存在,指出有幾個這樣的點;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知點在拋物線的準線上,過點作拋物線的兩條切線,切點分別為,.

(1)證明:為定值;

(2)當點軸上時,過點作直線,交拋物線兩點,滿足.問:直線是否恒過定點,若存在定點,求出點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數

(1)當時,直線相切,求的值;

(2)若函數內有且只有一個零點,求此時函數的單調區(qū)間;

(3)當時,若函數上的最大值和最小值的和為1,求實數的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓:的四個頂點圍成的四邊形的面積為,原點到直線的距離為.

(1)求橢圓的方程;

(2)已知定點,是否存在過的直線,使與橢圓交于,兩點,且以為直徑的圓過橢圓的左頂點?若存在,求出的方程:若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的兩個焦點分別為,離心率為,過的直線與橢圓交于兩點,且的周長為

1)求橢圓的方程;

2)若直線與橢圓分別交于兩點,且,試問點到直線的距離是否為定值,證明你的結論.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的右焦點為,上頂點為,直線的斜率為,且原點到直線的距離為.

(1)求橢圓的標準方程;

(2)若不經過點的直線與橢圓交于兩點,且與圓相切.試探究的周長是否為定值,若是,求出定值;若不是,請說明理由.

查看答案和解析>>

同步練習冊答案