【題目】設(shè)不等式組表示的區(qū)域為A,不等式組表示的區(qū)域為B

1)在區(qū)域A中任取一點(x,y),求點(xy)∈B的概率;

2)若xy分別表示甲、乙兩人各擲一次骰子所得的點數(shù),求點(xy)在區(qū)域B中的概率.

【答案】(1)(2)

【解析】

(1)依題意可知是幾何概型,利用面積比可求得答案;

(2)依題意可知是古典概型,利用古典概型的概率公式可求得答案.

1)設(shè)集合A中的點(x,y)∈B為事件M,區(qū)域A的面積為S136,區(qū)域B的面積為S218,∴PM

2)設(shè)點(x,y)在區(qū)域B為事件N,甲、乙兩人各擲一次骰子所得的點(xy)有:(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),(3,1),(3,2),(3,3),(3,4),(3,5),(3,6),(4,1),(4,2),(4,3),(4,4),(4,5),(4,6),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)共36個,其中在區(qū)域B中的點(xy)有(1,1),(2,1),(2,2),(3,1),(3,2),(3,3),(4,1),(4,2),(4,3),(4,4),(5,1),(5,2),(5,3),(5,4),(5,5),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)共21個,故PN

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P-ABCD中,底面ABCD為矩形,平面PCD⊥平面ABCDAB=2,BC=1,,EPB中點.利用空間向量方法完成以下問題:

1)求二面角E-AC-D的余弦值;

2)在棱PD上是否存在點M,使得?若存在,求的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)根據(jù)學(xué)生的興趣愛好,分別創(chuàng)建了“書法”、“詩詞”、“理學(xué)”三個社團,據(jù)資料統(tǒng)計新生通過考核選拔進入這三個社團成功與否相互獨立.2015年某新生入學(xué),假設(shè)他通過考核選拔進入該校的“書法”、“詩詞”、“理學(xué)”三個社團的概率依次為、、,己知三個社團他都能進入的概率為,至少進入一個社團的概率為,且.

(1)求的值;

(2)該校根據(jù)三個社團活動安排情況,對進入“書法”社的同學(xué)增加校本選修學(xué)分1分,對進入“詩詞”社的同學(xué)增加校本選修學(xué)分2分,對進入“理學(xué)”社的同學(xué)增加校本選修學(xué)分3分.求該新同學(xué)在社團方面獲得校本選修課學(xué)分分數(shù)不低于4分的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的中心在坐標原點,焦點在坐標軸上,且經(jīng)過、、三點.

1)求橢圓的方程;

2)若直線)與橢圓交于兩點,證明直線與直線的交點在直線上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】與正方體ABCD—A1B1C1D1的三條棱AB、CC1、A1D1所在直線的距離相等的點( )

A.有且只有1B.有且只有2

C.有且只有3D.有無數(shù)個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4—4:坐標系與參數(shù)方程

在平面直角坐標系中,曲線的參數(shù)方程為,其中為參數(shù),在以坐標原點為極點,軸的正半軸為極軸的極坐標系中,點的極坐標為,直線的極坐標方程為.

(1)求直線的直角坐標方程與曲線的普通方程;

(2)若是曲線上的動點,為線段的中點.求點到直線的距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系xOy中,圓C:x2+y2+4x-2y+m=0與直線相切.

(1)求圓C的方程;

(2)若圓C上有兩點M,N關(guān)于直線x+2y=0對稱,且,求直線MN的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)

(1)若曲線在點處的切線與軸平行,求

(2)當時,函數(shù)的圖象恒在軸上方,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】趙爽是我國古代數(shù)學(xué)家、天文學(xué)家,大約在公元222年,趙爽為《周髀算經(jīng)》一書作序時,介紹了勾股圓方圖,亦稱趙爽弦圖(以弦為邊長得到的正方形由4個全等的直角三角形再加上中間的一個小正方形組成的),類比趙爽弦圖,可類似地構(gòu)造如圖所示的圖形,它是由3個全等的三角形與中間的一個小等邊三角形拼成的一個大等邊三角形,設(shè),則(

A. B.

C. D.

查看答案和解析>>

同步練習(xí)冊答案