【題目】已知D是△ABC邊BC延長線上一點(diǎn),記 .若關(guān)于x的方程2sin2x﹣(λ+1)sinx+1=0在[0,2π)上恰有兩解,則實(shí)數(shù)λ的取值范圍是(
A.λ<﹣2
B.λ<﹣4
C.
D.λ<﹣4或

【答案】D
【解析】解:∵ +(1﹣λ) = +λ( )= = +(﹣λ)
又∵ = + ,∴ =(﹣λ) ,由題意得﹣λ>0,∴λ<0.
∵關(guān)于x的方程2sin2x﹣(λ+1)sinx+1=0在[0,2π)上恰有兩解,令sinx=t,由正弦函數(shù)的圖象知,
方程 2t2﹣(λ+1)t+1=0 在(﹣1,1)上有唯一解,
∴[2﹣(λ+1)+1][2+(λ+1)+1]<0 ①,或△=(λ+1)2﹣8=0 ②,
由①得 λ<﹣4 或λ>2(舍去). 由②得 λ=﹣1﹣2 ,或 λ=﹣1+2 (舍去).
故選D.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方體的棱長為,動(dòng)點(diǎn)、在棱上,動(dòng)點(diǎn)分別在棱,上,若,,,,大于零),則四面體的體積( ).

A. ,,都有關(guān) B. 有關(guān),與,無關(guān)

C. 有關(guān),與,無關(guān) D. 有關(guān),與,無關(guān)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市共有初中學(xué)生270000人,其中初一年級(jí),初二年級(jí),初三年級(jí)學(xué)生人數(shù)分別為99000,90000,81000,為了解該市學(xué)生參加“開放性科學(xué)實(shí)驗(yàn)活動(dòng)”的意向,現(xiàn)采用分層抽樣的方法從中抽取一個(gè)容量為3000的樣本,那么應(yīng)該抽取初三年級(jí)的人數(shù)為(
A.800
B.900
C.1000
D.1100

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將五個(gè)1,五個(gè)2,五個(gè)3,五個(gè)4,五個(gè)5共25個(gè)數(shù)填入一個(gè)5行5列的表格內(nèi)(每格填入一個(gè)數(shù)),使得同一行中任何兩數(shù)之差的絕對(duì)值不超過2,考查每行中五個(gè)數(shù)之和,記這五個(gè)和的最小值為,則的最大值為( )

A. B. 9 C. 10 D. 11

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是橢圓上關(guān)于原點(diǎn)對(duì)稱的任意兩點(diǎn),且點(diǎn)都不在 軸上.

(1)若,求證: 直線的斜率之積為定值;

(2)若橢圓長軸長為,點(diǎn)在橢圓上,設(shè)是橢圓上異于點(diǎn)的任意兩點(diǎn),且.問直線是否過一個(gè)定點(diǎn)?若過定點(diǎn),求出該定點(diǎn)坐標(biāo);若不過定點(diǎn),請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列具有性質(zhì):對(duì)任意 , 兩數(shù)至少有一個(gè)屬于

Ⅰ)分別判斷數(shù)集是否具有性質(zhì),并說明理由.

Ⅱ)求證:

Ⅲ)求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐中,底面是以為中心的菱形, 底面, 上一點(diǎn),且.

1)證明: 平面;

2)若,求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線、軸交于、兩點(diǎn).

Ⅰ)若點(diǎn)分別是雙曲線的虛軸、實(shí)軸的一個(gè)端點(diǎn),試在平面上找兩點(diǎn)、,使得雙曲線上任意一點(diǎn)到這兩點(diǎn)距離差的絕對(duì)值是定值.

Ⅱ)若以原點(diǎn)為圓心的圓截直線所得弦長是,求圓的方程以及這條弦的中點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn , 且滿足Sn=2an﹣2.若數(shù)列{bn}滿足bn=10﹣log2an , 則是數(shù)列{bn}的前n項(xiàng)和取最大值時(shí)n的值為(
A.8
B.10
C.8或9
D.9或10

查看答案和解析>>

同步練習(xí)冊(cè)答案