【題目】設(shè)函數(shù)f(x)=2ax2+2bx,若存在實數(shù)x0∈(0,t),使得對任意不為零的實數(shù)a,b均有f(x0)=a+b成立,則t的取值范圍是_____.
【答案】
【解析】
對任意不為零的實數(shù),均有成立等價于,分或兩種情況討論,即可求出的范圍.
f(x)=a+b成立等價于(2x﹣1)b=(1﹣2x2)a,
當x時,左邊=0,右邊≠0,不成立,
當x時,(2x﹣1)b=(1﹣2x2)a等價于,
設(shè)k=2x﹣1,則x,
則(k﹣2),
∵x∈(0,t),(t),或x∈(0,)∪(,t),(t),
∴k∈(﹣1,2t﹣1),(t),或k∈(﹣1,0)∪(0,2t﹣1),(t),(*)
∵a,b∈R,
∴(k﹣2),在(*)上恒有解,
∴(k﹣2),在(*)上的值域為R,
設(shè)g(k)(k)﹣1,則g(k)在(﹣1,0),(0,2t-1)上單調(diào)遞減,
對應(yīng)值域為
要保證(k﹣2)在(*)上的值域為R,則
∴,
解得t>1,
故答案為:.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解甲、乙兩種離子在小鼠體內(nèi)的殘留程度,進行如下試驗:將200只小鼠隨機分成兩組,每組100只,其中組小鼠給服甲離子溶液,組小鼠給服乙離子溶液.每只小鼠給服的溶液體積相同、摩爾濃度相同.經(jīng)過一段時間后用某種科學(xué)方法測算出殘留在小鼠體內(nèi)離子的百分比.根據(jù)試驗數(shù)據(jù)分別得到如下直方圖:
記為事件:“乙離子殘留在體內(nèi)的百分比不低于”,根據(jù)直方圖得到的估計值為.
(1)求乙離子殘留百分比直方圖中的值;
(2)分別估計甲、乙離子殘留百分比的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點值為代表).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】改革開放以來,人們的支付方式發(fā)生了巨大轉(zhuǎn)變.近年來,移動支付已成為主要支付方式之一.為了解某校學(xué)生上個月A,B兩種移動支付方式的使用情況,從全校學(xué)生中隨機抽取了100人,發(fā)現(xiàn)樣本中A,B兩種支付方式都不使用的有5人,樣本中僅使用A和僅使用B的學(xué)生的支付金額分布情況如下:
交付金額(元) 支付方式 | (0,1000] | (1000,2000] | 大于2000 |
僅使用A | 18人 | 9人 | 3人 |
僅使用B | 10人 | 14人 | 1人 |
(Ⅰ)從全校學(xué)生中隨機抽取1人,估計該學(xué)生上個月A,B兩種支付方式都使用的概率;
(Ⅱ)從樣本僅使用A和僅使用B的學(xué)生中各隨機抽取1人,以X表示這2人中上個月支付金額大于1000元的人數(shù),求X的分布列和數(shù)學(xué)期望;
(Ⅲ)已知上個月樣本學(xué)生的支付方式在本月沒有變化.現(xiàn)從樣本僅使用A的學(xué)生中,隨機抽查3人,發(fā)現(xiàn)他們本月的支付金額都大于2000元.根據(jù)抽查結(jié)果,能否認為樣本僅使用A的學(xué)生中本月支付金額大于2000元的人數(shù)有變化?說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某廠生產(chǎn)的產(chǎn)品在出廠前都要做質(zhì)量檢測,每一件一等品都能通過檢測,每一件二等品通過檢測的概率為.現(xiàn)有10件產(chǎn)品,其中6件是一等品,4件是二等品.
(Ⅰ) 隨機選取1件產(chǎn)品,求能夠通過檢測的概率;
(Ⅱ)隨機選取3件產(chǎn)品,其中一等品的件數(shù)記為,求的分布列;
(Ⅲ)隨機選取3件產(chǎn)品,求這三件產(chǎn)品都不能通過檢測的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某闖關(guān)游戲規(guī)劃是:先后擲兩枚骰子,將此試驗重復(fù)輪,第輪的點數(shù)分別記為,如果點數(shù)滿足,則認為第輪闖關(guān)成功,否則進行下一輪投擲,直到闖關(guān)成功,游戲結(jié)束.
(1)求第1輪闖關(guān)成功的概率;
(2)如果第輪闖關(guān)成功所獲的獎金(單位:元) ,求某人闖關(guān)獲得獎金不超過2500元的概率;
(3)如果游戲只進行到第4輪,第4輪后無論游戲成功與否,都終止游戲,記進行的輪數(shù)為隨機變量,求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,底面ABCD是正方形,AC與BD交于點O,PC⊥底面ABCD, 點E為側(cè)棱PB的中點.
求證:(1) PD∥平面ACE;
(2) 平面PAC⊥平面PBD.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[選修4―4:坐標系與參數(shù)方程]
在直角坐標系xOy中,曲線C的參數(shù)方程為(θ為參數(shù)),直線l的參數(shù)方程為.
(1)若a=1,求C與l的交點坐標;
(2)若C上的點到l的距離的最大值為,求a.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) .
(1)當時,求曲線在點處的切線方程;
(2)當時,設(shè)函數(shù),且函數(shù)有且僅有一個零點,若當時, 恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解春季晝夜溫差大小與某種子發(fā)芽多少之間的關(guān)系,現(xiàn)在從4月份的30天中隨機挑選了5天進行研究,且分別記錄了每天晝夜溫差與每天每100顆種子浸泡后的發(fā)芽數(shù),得到如下表格:
日期 | 4月1日 | 4月7日 | 4月15日 | 4月21日 | 4月30日 |
溫差x/℃ | 10 | 11 | 13 | 12 | 8 |
發(fā)芽數(shù)y/顆 | 23 | 25 | 30 | 26 | 16 |
(1)從這5天中任選2天,記發(fā)芽的種子數(shù)分別為,求事件“均不小于25”的概率;
(2) 若由線性回歸方程得到的估計數(shù)據(jù)與4月份所選5天的檢驗數(shù)據(jù)的誤差均不超過2顆,則認為得到的線性回歸方程是可靠的. 請根據(jù)4月7日,4月15日與4月21日這三天的數(shù)據(jù),求出關(guān)于的線性回歸方程,并判定所得的線性回歸方程是否可靠?
參考公式: ,
參考數(shù)據(jù):
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com