【題目】某企業(yè)為了了解職工的工作狀況,隨機抽取了一個車間對職工工作時間的情況進行暗訪,工作時間在小時及以上的為合格.把所得數(shù)據(jù)進行整理后,分成組畫出頻率分布直方圖(如圖所示),但由于工作疏忽,沒有畫出最后一組,只知道最后一組的頻數(shù)是.

(Ⅰ)求這次暗訪中工作時間不合格的人數(shù);

(Ⅱ)已知在工作時間超過小時的人中有兩名女職工,現(xiàn)要從工作時間在小時以上的人中選出兩名代表在職工代表大會上發(fā)言,求至少選出一位女職工作代表的概率.

【答案】(Ⅰ)14;(Ⅱ) .

【解析】試題分析:(Ⅰ)根據(jù)各矩形面積和為可得第組的頻率為,從而總?cè)藬?shù)為,進而可得工作時間不合格的人數(shù)為;(Ⅱ)工作時間超過小時得共有人,利用列舉法列舉出人選出兩人的情況共有種,其中至少選出一位女職工作代表的有種,根據(jù)古典概型概率公式可得結(jié)果.

試題解析:(Ⅰ) 組的頻率為,

本車間總?cè)藬?shù)為.

工作時間不合格的人數(shù)為

(Ⅱ)由已知,工作時間超過小時得共有人,分別記為: ,其中 為男職工, 為女職工.

從中任選人有: , , , , , , , , , , , , , 種情況,

其中至少有一名女職工得情況有: , , , , , , 種,

所求概率為.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖1,, , , , 邊的中點,現(xiàn)把沿折疊,使其與構(gòu)成如圖2所示的三棱錐,.

1)求證:平面平面;

2)求平面與平面夾角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2018屆四川省成都市第七中學高三上學期模擬】已知橢圓的一個焦點,且過點,右頂點為,經(jīng)過點的動直線與橢圓交于兩點.

1)求橢圓的方程;

2是橢圓上一點, 的角平分線交軸于,求的長;

3)在軸上是否存在一點,使得點關(guān)于軸的對稱點落在上?若存在,求出的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C中心在原點,焦點在x軸上,左右焦點分別為F1,F(xiàn)2,且|F1F2|=2,點(1,)在橢圓C上.

(1)求橢圓C的方程;

(2)過F1的直線l與橢圓C相交于A,B兩點,且△AF2B的面積為,求以F2為圓心且與直線l相切的圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)),滿足,且時恒成立.

1)求、的值;

2)若,解不等式;

3)是否存在實數(shù),使函數(shù)在區(qū)間上有最小值?若存在,請求出的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù). 為實數(shù),且,記由所有組成的數(shù)集為.

1)已知,求

2)對任意的,恒成立,求的取值范圍;

3)若,,判斷數(shù)集中是否存在最大的項?若存在,求出最大項;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】“干支紀年法”是中國歷法上自古以來使用的紀年方法,甲、乙、丙、丁、戊、己、庚、辛、壬、癸被稱為“十天干”,子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥叫做“十二地支”!疤旄伞币浴凹住弊珠_始,“地支”以“子”字開始,兩者按干支順序相配,組成了干支紀年法,其相配順序為:甲子、乙丑、丙寅…癸酉,甲戌、乙亥、丙子…癸末,甲申、乙酉、丙戌…癸巳,…,共得到個組成,周而復始,循環(huán)記錄。2014年是“干支紀年法”中的甲午年,那么2020年是“干支紀年法”中的()

A. 己亥年 B. 戊戌年 C. 辛丑年 D. 庚子年

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓=1(a>b>0)上的點P到左,右兩焦點F1,F2的距離之和為2,離心率為.

(1)求橢圓的標準方程;

(2)過右焦點F2的直線l交橢圓于A,B兩點,若y軸上一點M(0,)滿足|MA|=|MB|,求直線l的斜率k的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某儀器經(jīng)過檢驗合格才能出廠,初檢合格率為:若初檢不合格,則需要進行調(diào)試,經(jīng)調(diào)試后再次對其進行檢驗;若仍不合格,作為廢品處理,再檢合格率為.每臺儀器各項費用如表:

項目

生產(chǎn)成本

檢驗費/次

調(diào)試費

出廠價

金額(元)

1000

100

200

3000

(Ⅰ)求每臺儀器能出廠的概率;

(Ⅱ)求生產(chǎn)一臺儀器所獲得的利潤為1600元的概率(注:利潤出廠價生產(chǎn)成本檢驗費調(diào)試費);

(Ⅲ)假設每臺儀器是否合格相互獨立,記為生產(chǎn)兩臺儀器所獲得的利潤,求的分布列和數(shù)學期望.

查看答案和解析>>

同步練習冊答案