【題目】如圖,在長方形中,,點為線段上一動點,現(xiàn)將沿折起,使點在面內(nèi)的射影在直線上,當點運動到,則點所形成軌跡的長度為( )

A. B. C. D.

【答案】C

【解析】

根據(jù)圖形的翻折過程中變與不變的量和位置關(guān)系知,若連接D'K,則D'KA=90°,得到K點的軌跡是以AD'為直徑的圓上一弧,根據(jù)長方形的邊長得到圓的半徑,求得此弧所對的圓心角的弧度數(shù),利用弧長公式求出軌跡長度.

由題意,將AED沿AE折起,使平面AED平面ABC,在平面AED內(nèi)過點D作DKAE,K為垂足,由翻折的特征知,連接D'K,

則D'KA=90°,故K點的軌跡是以AD'為直徑的圓上一弧,根據(jù)長方形知圓半徑是,

如圖當E與C重合時,AK==,

取O為AD′的中點,得到OAK是正三角形.

∠K0A=,∴∠K0D'=,

其所對的弧長為=

故選

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】己知函數(shù)fx)對xR均有fx+2f(﹣x)=mx6,若fxlnx恒成立,則實數(shù)m的取值范圍是_________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知F1,F2分別是雙曲線C的左、右焦點,若F2關(guān)于漸近線的對稱點恰落在以F1為圓心,|OF1|為半徑的圓上,則雙曲線C的離心率為________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)橢圓 (a>b>0)的左焦點為F,上頂點為B. 已知橢圓的離心率為,A的坐標為.

I)求橢圓的方程;

II)設(shè)直線l 與橢圓在第一象限的交點為P,l與直線AB交于點Q. (O為原點) k的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的中心在原點,焦點在軸上,左右焦點分別為,,離心率為,右焦點到右頂點的距離為1.

(1)求橢圓的方程;

(2)過 的直線與橢圓交于不同的兩點,,則的面積是否存在最大值?若存在,求出這個最大值及直線的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2018年10月28日,重慶公交車墜江事件震驚全國,也引發(fā)了廣大群眾的思考——如何做一個文明的乘客.全國各地大部分社區(qū)組織居民學習了文明乘車規(guī)范.社區(qū)委員會針對居民的學習結(jié)果進行了相關(guān)的問卷調(diào)查,并將得到的分數(shù)整理成如圖所示的統(tǒng)計圖.

(1)求得分在上的頻率;

(2)求社區(qū)居民問卷調(diào)查的平均得分的估計值;(同一組中的數(shù)據(jù)以這組數(shù)據(jù)所在區(qū)間中點的值作代表)

(3)由于部分居民認為此項學習不具有必要性,社區(qū)委員會對社區(qū)居民的學習態(tài)度作調(diào)查,所得結(jié)果統(tǒng)計如下:(表中數(shù)據(jù)單位:人)

認為此項學習十分必要

認為此項學習不必要

50歲以上

400

600

50歲及50歲以下

800

200

根據(jù)上述數(shù)據(jù),計算是否有的把握認為居民的學習態(tài)度與年齡相關(guān).

附:,其中.

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直三棱柱中,為正三角形,點在棱上,且,點、分別為棱、的中點.

1)證明:平面;

2)若,求直線與平面所成的角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)若函數(shù)上是增函數(shù),求實數(shù)的取值范圍;

(2)若函數(shù)上的最小值為3,求實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1)當時,求的單調(diào)區(qū)間.

2)設(shè)直線是曲線的切線,若的斜率存在最小值-2,求的值,并求取得最小斜率時切線的方程.

3)已知分別在處取得極值,求證:

查看答案和解析>>

同步練習冊答案