設橢圓C:
過點(0,4),(5,0).
(1)求C的方程;
(2)求過點(3,0)且斜率為
的直線被橢圓C所截線段的中點坐標
(1)將點(0,4),(5,0)代入
的方程, ∴b=4,∴
∴
的方程為
(2)過點
且斜率為
的直線方程為
,
設直線與C的交點為A
,B
,將直線方程
代入C的方程,得
,即
,解得
,
,
AB的中點坐標
,
,
即所截線段的中點坐標為
.
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
已知橢圓
的離心率為
,以原點為圓心,橢圓的短半軸為半徑的圓與直線x-y+
=0相切,過點P(4,0)的直線L與橢圓C相交于A、B兩點.
(1).求橢圓C的方程;
(2).求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
若橢圓上存在一點P,使得點P到兩焦點的距離之比為
,則此橢圓離心率的取值范圍是( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
已知點
動點
滿足
,當點
的縱坐標為
時,點
到坐標原點的距離為
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
雙曲線
的一個焦點為
,則
的值為___________,雙曲線的漸近線方程為___________.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知
,直線
,橢圓
分別為橢圓
的左、右焦點.
(Ⅰ)當直線
過右焦點
時,求直線
的方程;
(Ⅱ)設直線
與橢圓
交于
兩點,
的重心分別為
若原點
在以線段
為直徑的圓內(nèi),求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
設直線
與橢圓
相交于
兩個不同的點.
(1)求實數(shù)
的取值范圍;
(2)當
時,求
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分12分)設橢圓C:
的左、右焦點分別為
,
,點
滿足
(Ⅰ)求橢圓C的離心率
;
(Ⅱ)若已知點
,設直線
與橢圓C相交于A,B兩點,且
,
求橢圓C的方程。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
.(本小題滿分14分)
已知橢圓
的左焦點為
,離心率e=
,M、N是橢圓上的動
點。
(Ⅰ)求橢圓標準方程;
(Ⅱ)設動點P滿足:
,直線OM與ON的斜率之積為
,問:是否存在定點
,
使得
為定值?,若存在,求出
的坐標,若不存在,說明理由。
(Ⅲ)若
在第一象限,且點
關于原點對稱,點
在
軸上的射影為
,連接
并延長
交橢圓于點
,證明:
;
查看答案和解析>>