【題目】如下圖,直三棱柱ABC-A1B1C1的底面是邊長(zhǎng)為2的正三角形,E、F分別是BC、CC1的中點(diǎn).
(1)證明:平面AEF⊥平面B1BCC1;
(2)若直線A1C與平面A1ABB1所成的角為45°,求三棱錐F-AEC的體積.
【答案】
(1)證明:如圖,
因?yàn)槿庵鵄BC-A1B1C1是直三棱柱,所以AE⊥BB1,
又E是正三角形ABC的邊BC的中點(diǎn),所以AE⊥BC,因此AE⊥平面B1BCC1,又AE平面AEF,所以平面AEF⊥平面B1BCC1.
(2)解:設(shè)AB的中點(diǎn)為D,連接A1D,CD,因?yàn)椤鰽BC是正三角形,所以CD⊥AB,又三棱柱ABC-A1B1C1是直三棱柱,所以CD⊥AA1,因此CD⊥平面A1ABB1,于是∠CA1D為直線A1C與平面A1ABB1所成的角,由題設(shè)知∠CA1D=45°,
所以A1D=CD= AB= ,在Rt△AA1D中,AA1= = = ,所以FC= AA1= ,故三棱錐F-AEC的體積V=
S△AEC×FC= .
【解析】(1)根據(jù)直三棱柱的性質(zhì)得出AE⊥BB1,再利用等邊三角形的性質(zhì)得出AE⊥BC再借助面面垂直的判定定理即可得證。(2)根據(jù)已知條件計(jì)算出直三棱柱的棱長(zhǎng)再借助三棱錐的體積公式代入數(shù)值求出結(jié)果即可。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知雙曲線 =1(a>0,b>0)的右焦點(diǎn)為F(c,0).
(1)若雙曲線的一條漸近線方程為y=x且c=2,求雙曲線的方程;
(2)以原點(diǎn)O為圓心,c為半徑作圓,該圓與雙曲線在第一象限的交點(diǎn)為A,過(guò)A作圓的切線,斜率為﹣ ,求雙曲線的離心率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在如圖所示的幾何體中,四邊形 是等腰梯形, , 平面 , , .
(1)求證: 平面 ;
(2)求二面角 的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在四棱錐P-ABCD中,底面是邊長(zhǎng)為a的正方形,側(cè)棱PD=a , PA=PC= a ,
(1)求證:PD⊥平面ABCD;
(2)求證:平面PAC⊥平面PBD;
(3)求二面角P-AC-D的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】比較下列各題中兩個(gè)冪的值的大。
(1)2.3 ,2.4 ;
(2) , ;
(3)(-0.31) ,0.35 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義在R上的函數(shù)f(x)對(duì)任意0<x2<x1都有 <1.且函數(shù)y=f(x)的圖象關(guān)于原點(diǎn)對(duì)稱(chēng),若f(2)=2,則不等式f(x)﹣x>0的解集是( )
A.(﹣2,0)∪(0,2)
B.(﹣∞,﹣2)∪(2,+∞)
C.(﹣∞,﹣2)∪(0,2)
D.(﹣2,0)∪(2,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)fn(x)=xn+bx+c(n∈Z,b,c∈R).
(1)若n=﹣1,且f﹣1(1)=f﹣1( )=4,試求實(shí)數(shù)b,c的值;
(2)設(shè)n=2,若對(duì)任意x1 , x2∈[﹣1,1]有|f2(x1)﹣f2(x2)|≤4恒成立,求b的取值范圍;
(3)當(dāng)n=1時(shí),已知bx2+cx﹣a=0,設(shè)g(x)= ,是否存在正數(shù)a,使得對(duì)于區(qū)間 上的任意三個(gè)實(shí)數(shù)m,n,p,都存在以f1(g(m)),f1(g(n)),f1(g(p))為邊長(zhǎng)的三角形?若存在,求出a的取值范圍;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知各項(xiàng)均為正數(shù)的數(shù)列{an}的前n項(xiàng)和為Sn , 滿足a =2Sn+n+4,且a2﹣1,a3 , a7恰為等比數(shù)列{bn}的前3項(xiàng).
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)令cn= ﹣ ,求數(shù)列{cn}的前n項(xiàng)和Tn .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com