過橢圓上一點作圓的兩條切線,點為切點.過的直線軸, 軸分別交于點兩點, 則的面積的最小值為(  )
A.B.C.1D.
B
設(shè)P(m,n),則,設(shè),,則切線PA:,PB:,∴直線AB:mx+ny=2,∴,,∴,∵,∴,∴,故選B
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
如圖橢圓的右頂點是,上下兩個頂點分別為,四邊形是矩形(為原點),點分別為線段的中點.

(Ⅰ)證明:直線與直線的交點在橢圓上;
(Ⅱ)若過點的直線交橢圓于兩點,關(guān)于軸的對稱點(不共線),
問:直線是否經(jīng)過軸上一定點,如果是,求這個定點的坐標,如果不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分13分)
已知橢圓 .有相同的離心率,過點的直線,依次交于A,C,D,B四點(如圖).當直線的上頂點時, 直線的傾斜角為.

(1)求橢圓的方程;
(2)求證:;
(3)若,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(12分)已知圓及定點,點Q是圓A上的動點,點G在BQ上,點P在QA上,且滿足,=0.
(I)求P點所在的曲線C的方程;
(II)過點B的直線與曲線C交于M、N兩點,直線與y軸交于E點,若為定值。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分14分)設(shè)橢圓: 過點(0,4),離心率為
(1)求的方程;
(2)求過點(3,0)且斜率為的直線被所截線段的中點坐標.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知橢圓與雙曲線有公共的焦點,的一條漸近線與以的長軸為直徑的圓相交于A,B兩點,若恰好將線段AB三等分,則=                            

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若橢圓的左右焦點分別為,線段被拋物線的焦點分成5:3兩段,則此橢圓的離心率為
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

橢圓的焦點為,過點的直線交橢圓于兩點,,則橢圓的離心率為(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知、是橢圓>0)的兩個焦點,為橢圓上一點,且.若的面積為9,則="____________."

查看答案和解析>>

同步練習冊答案