【題目】甲、乙兩名射擊運動員在進行射擊訓練,已知甲命中10環(huán),9環(huán),8環(huán)的概率分別是,,乙命中10環(huán),9環(huán),8環(huán)的概率分別是,,任意兩次射擊相互獨立.

1)求甲運動員兩次射擊命中環(huán)數(shù)之和恰好為18的概率;

2)現(xiàn)在甲、乙兩人進行射擊比賽,每一輪比賽兩人各射擊1次,環(huán)數(shù)高于對方為勝,環(huán)數(shù)低于對方為負,環(huán)數(shù)相等為平局,規(guī)定連續(xù)勝利兩輪的選手為最終的勝者,比賽結束,求恰好進行3輪射擊后比賽結束的概率

【答案】(1)(2)

【解析】

1)甲運動員兩次射擊命中環(huán)數(shù)之和恰好為18包含第一次10環(huán)和第二次8環(huán),第一次8環(huán)第二次10環(huán)第一次9環(huán)和第二次9環(huán)這三種情況,分別求三種情況概率再求和;

2)求恰好進行3輪射擊后比賽結束的概率,先確定甲勝利,平局,失敗的概率,恰好進行3輪射擊后比賽結束情形包括兩種:①當甲獲得最終勝利結束3輪比賽時,由第2輪、第3輪甲連續(xù)勝利,第一輪甲沒有獲得勝利,算出其概率P1;②當乙獲得最終勝利結束3輪比賽時,則第2輪、第3輪乙連續(xù)勝利,第1輪乙沒有獲得勝利,其概率P2,兩情形概率之和即為所求.

1)記X表示甲運動員兩次射擊命中環(huán)數(shù)之和,

X18包含第一次10環(huán)和第二次8環(huán),第一次8環(huán)第二次10環(huán)第一次9環(huán)和第二次9環(huán)這三種情況,

∴甲運動員兩次射擊命中環(huán)數(shù)之和恰好為18的概率為:

P.

2)記Ai表示甲在第i輪勝利,Bi表示甲在第i輪平局,i表示甲在第i輪失敗,

PAi,PBiPi,

①當甲獲得最終勝利結束3輪比賽時,由第2輪、第3輪甲連續(xù)勝利,第一輪甲沒有獲得勝利,

其概率P1,

②當乙獲得最終勝利結束3輪比賽時,則第2輪、第3輪乙連續(xù)勝利,第1輪乙沒有獲得勝利,

其概率P2

∴經過3輪比賽結束的概率P.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,底面,,,,點為棱的中點

1)證明:;

2)若為棱上一點,滿足,求銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】“不忘初心、牢記使命”主題教育活動正在全國開展,某區(qū)政府為統(tǒng)計全區(qū)黨員干部一周參與主題教育活動的時間,從全區(qū)的黨員干部中隨機抽取n名,獲得了他們一周參加主題教育活動的時間(單位:時)的頻率分布直方圖,如圖所示,已知參加主題教育活動的時間在內的人數(shù)為92.

1)估計這些黨員干部一周參與主題教育活動的時間的平均值;

2)用頻率估計概率,如果計劃對全區(qū)一周參與主題教育活動的時間在內的黨員干部給予獎勵,且參與時間在內的分別獲二等獎和一等獎,通過分層抽樣方法從這些獲獎人中隨機抽取5人,再從這5人中任意選取3人,求3人均獲二等獎的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),;

若函數(shù)上存在零點,求a的取值范圍;

設函數(shù),,當時,若對任意的,總存在,使得,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】由于受到網絡電商的沖擊,某品牌的洗衣機在線下的銷售受到影響,承受了一定的經濟損失,現(xiàn)將地區(qū)200家實體店該品牌洗衣機的月經濟損失統(tǒng)計如圖所示.

1)求的值;

2)求地區(qū)200家實體店該品牌洗衣機的月經濟損失的眾數(shù)以及中位數(shù);

3)不經過計算,直接給出地區(qū)200家實體店經濟損失的平均數(shù)6000的大小關系.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖是一幅招貼畫的示意圖,其中ABCD是邊長為的正方形,周圍是四個全等的弓形.已知O為正方形的中心,GAD的中點,點P在直線OG上,弧AD是以P為圓心、PA為半徑的圓的一部分,OG的延長線交弧AD于點H.設弧AD的長為,.

1)求關于的函數(shù)關系式;

2)定義比值為招貼畫的優(yōu)美系數(shù),當優(yōu)美系數(shù)最大時,招貼畫最優(yōu)美.證明:當角滿足:時,招貼畫最優(yōu)美.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某市計劃在一片空地上建一個集購物、餐飲、娛樂為一體的大型綜合園區(qū),如圖,已知兩個購物廣場的占地都呈正方形,它們的面積分別為13公頃和8公頃;美食城和歡樂大世界的占地也都呈正方形,分別記它們的面積為公頃和公頃;由購物廣場、美食城和歡樂大世界圍成的兩塊公共綠地都呈三角形,分別記它們的面積為公頃和公頃.

1)設,用關于的函數(shù)表示,并求在區(qū)間上的最大值的近似值(精確到0.001公頃);

2)如果,并且,試分別求出、、的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

討論函數(shù)的單調性;

時,求函數(shù)在區(qū)間上的零點個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某蛋糕店每天制作生日蛋糕若干個,每個生日蛋糕成本為50元,每個蛋糕的售價為100元,如果當天賣不完,剩余的蛋糕作垃圾處理.現(xiàn)搜集并整理了100天生日蛋糕的日需求量(單位:個),得到如圖所示的柱狀圖.100天記錄的各需求量的頻率作為每天各需求量發(fā)生的概率.

1若該蛋糕店某一天制作生日蛋糕17個,設當天的需求量為,則當天的利潤(單位:元)是多少?

2若蛋糕店一天制作17個生日蛋糕.

求當天的利潤(單位:元)關于當天需求量的函數(shù)解析式;

求當天的利潤不低于600圓的概率.

(3)若蛋糕店計劃一天制作16個或17個生日蛋糕,請你以蛋糕店一天利潤的平均值作為決策依據(jù),應該制作16個還是17個生日蛋糕?

查看答案和解析>>

同步練習冊答案