【題目】已知命題p:m∈R,使得函數(shù)f(x)=x2+(m﹣1)x2﹣2是奇函數(shù),命題q:向量 =(x1 , y1), =(x2 , y2),則“ = ”是:“ ”的充要條件,則下列命題為真命題的是( )
A.p∧q
B.(¬p)∧q
C.p∧(¬q)
D.(¬p)∧(¬q)
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,ABC﹣A1B1C1是底面邊長為2,高為 的正三棱柱,經(jīng)過AB的截面與上底面相交于PQ,設(shè)C1P=λC1A1(0<λ<1).、
(1)證明:PQ∥A1B1;
(2)當 時,求點C到平面APQB的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是的⊙O直徑,CB與⊙O相切于B,E為線段CB上一點,連接AC、AE分別交⊙O于D、G兩點,連接DG交CB于點F.
(1)求證:C、D、G、E四點共圓.
(2)若F為EB的三等分點且靠近E,EG=1,GA=3,求線段CE的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分16分)平面直角坐標系xoy中,直線截以原點O為圓心的圓所得的弦長為
(1)求圓O的方程;
(2)若直線與圓O切于第一象限,且與坐標軸交于D,E,當DE長最小時,求直線的方程;
(3)設(shè)M,P是圓O上任意兩點,點M關(guān)于x軸的對稱點為N,若直線MP、NP分別交于x軸于點(m,0)和(n,0),問mn是否為定值?若是,請求出該定值;若不是,請說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,CD是∠ACB的平分線,△ACD的外接圓交BC于點E,AB=2AC,
(1)求證:BE=2AD;
(2)求函數(shù)AC=1,BC=2時,求AD的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,角A、B、C所對的邊分別為a、b、c,| |=5,20a +15b +12c = , =2 ,則 的值為( )
A.
B.﹣
C.﹣
D.﹣8
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知多面體ABC﹣A1B1C1中,底面△ABC為等邊三角形,邊長為2,AA1⊥平面ABC,四邊形A1ACC1為直角梯形,CC1與平面ABC所成的角為 ,AA1=1
(1)若P為AB的中點,求證:A1P∥平面BC1C;
(2)求二面角A1﹣BC1﹣C的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)在處有極值,且其圖像在處的切線與直線平行.
(I).求函數(shù)的單調(diào)區(qū)間;
(II).求函數(shù)的極大值與極小值的差;
(III).若時,恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某興趣小組欲研究晝夜溫差大小與患感冒人數(shù)多少之間的關(guān)系,他們分別到氣象局與某醫(yī)院抄錄了1至6月份每月10號的晝夜溫差情況與因患感冒而就診的人數(shù),得到如下資料:
該興趣小組確定的研究方案是:先用2、3、4、5月的4組數(shù)據(jù)求線性回歸方程,再用1月和6月的2組數(shù)據(jù)進行檢驗.
(1)請根據(jù)2、3、4、5月的數(shù)據(jù),求出y關(guān)于x的線性回歸方程;
(2)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2人,則認為得到的線性回歸方程是理想的,試問該小組所得線性回歸方程是否理想?
(參考公式: ,)
參考數(shù)據(jù):11×25+13×29+12×26+8×16=1092,112+132+122+82=498.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com