巳知橢圓G的中心在坐標原點,長軸在x軸上,離心率為
3
2
,且G上一點到G的兩個焦點的距離之和為12,則橢圓G的方程為______.
由題設知e=
3
2
,2a=12,
∴a=6,b=3,
∴所求橢圓方程為
x2
36
+
y2
9
=1

答案:
x2
36
+
y2
9
=1
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:單選題

如圖,已知橢圓的左、右準線分別為、,且分別交軸于、兩點,從上一點發(fā)出一條光線經(jīng)過橢圓的左焦點軸反射后與交于點,若,且,則橢圓的離心率等于(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
經(jīng)過點(0,1),離心率e=
3
2

(l)求橢圓C的方程;
(2)設直線x=my+1與橢圓C交于A,B兩點,點A關(guān)于x軸的對稱點為A′(A′與B不重合),則直線A′B與x軸是否交于一個定點?若是,請寫出定點坐標,并證明你的結(jié)論;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知定點A(-
3
,0)
,B是圓C:(x-
3
)2+y2=16
(C為圓心)上的動點,AB的垂直平分線與BC交于點E.
(1)求動點E的軌跡方程;
(2)設直線l:y=kx+m(k≠0,m>0)與E的軌跡交于P,Q兩點,且以PQ為對角線的菱形的一頂點為(-1,0),求:△OPQ面積的最大值及此時直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓C的對稱中心為原點O,焦點在x軸上,離心率為
1
2
,且點(1,
3
2
)在該橢圓上.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過橢圓C的左焦點F1的直線l與橢圓C相交于A,B兩點,若△AOB的面積為
6
2
7
,求圓心在原點O且與直線l相切的圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)
的右焦點為F(3,0),過點F的直線交橢圓E于A、B兩點.若AB的中點坐標為(1,-1),則E的方程為(  )
A.
x2
45
+
y2
36
=1
B.
x2
36
+
y2
27
=1
C.
x2
27
+
y2
18
=1
D.
x2
18
+
y2
9
=1

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若方程
x2
25-k
+
y2
k-9
=1表示橢圓,則k的取值范圍是(  )
A.(9,17)B.(9,25)C.(9,17)∪(17,25)D.(-∞,9)∪(25,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,F(xiàn)是中心在原點、焦點在x軸上的橢圓C的右焦點,\直線l:x=4是橢圓C的右準線,F(xiàn)到直線l的距離等于3.
(1)求橢圓C的方程;
(2)點P是橢圓C上動點,PM⊥l,垂足為M.是否存在點P,使得△FPM為等腰三角形?若存在,求出點P的坐標;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

請閱讀以下材料,然后解決問題:
①設橢圓的長半軸長為m短半軸長為b,則橢圓的面積為πab
②我們把由半橢圓C1
y2
b2
+
x2
c2
=1(x≤0)與半橢圓C2
x2
a2
+
y2
b2
=1(x≥0)合成的曲線稱作“果圓”,其中a2=b2+c2,a>0,b>c>0
如圖,設點F0,F(xiàn)1,F(xiàn)2是相應橢圓的焦點,A1,A2和B1,B2是“果圓”與x,y軸的交點,若△F0F1F2是邊長為1的等邊三角形,則上述“果圓”的面積為:______.

查看答案和解析>>

同步練習冊答案