已知圓C的方程為:x2+y2=4
(1)求過(guò)點(diǎn)P(2,1)且與圓C相切的直線l的方程;
(2)直線l過(guò)點(diǎn)D(1,2),且與圓C交于A、B兩點(diǎn),若|AB|=2
3
,求直線l的方程;
(3)圓C上有一動(dòng)點(diǎn)M(x0,y0),
ON
=(0,y0),若向量
OQ
=
OM
+
ON
,求動(dòng)點(diǎn)Q的軌跡方程.
(1)當(dāng)k不存在時(shí),x=2滿足題意;
當(dāng)k存在時(shí),設(shè)切線方程為y-1=k(x-2),
|2-k|
k2+1
=2得,k=-
3
4
,
則所求的切線方程為x=2或3x+4y-10=0;
(2)當(dāng)直線l垂直于x軸時(shí),此時(shí)直線方程為x=1,l與圓的兩個(gè)交點(diǎn)坐標(biāo)為(1,
3
)和(1,-
3
),這兩點(diǎn)的距離為2
3
,滿足題意;
當(dāng)直線l不垂直于x軸時(shí),設(shè)其方程為y-2=k(x-1),即kx-y-k+2=0,
設(shè)圓心到此直線的距離為d,
∴d=
22-(
2
3
2
)
2
=1,即
|2-k|
k2+1
=1,
解得:k=
3
4
,
此時(shí)直線方程為3x-4y+5=0,
綜上所述,所求直線方程為3x-4y+5=0或x=1;
(3)設(shè)Q點(diǎn)的坐標(biāo)為(x,y),
∵M(jìn)(x0,y0),
ON
=(0,y0),
OQ
=
OM
+
ON
,
∴(x,y)=(x0,2y0),
∴x=x0,y=2y0,
∵x02+y02=4,
∴x2+(
y
2
2=4,即
x2
4
+
y2
16
=1.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓C的方程為(x-1)2+(y-1)2=1,P點(diǎn)坐標(biāo)為(2,3),求過(guò)P點(diǎn)的圓的切線方程以及切線長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓C的方程為(x-3)2+y2=4,定點(diǎn)A(-3,0),則過(guò)定點(diǎn)A且和圓C外切的動(dòng)圓圓P的軌跡方程是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(B題)已知圓C的方程為(x-1)2+y2=9,點(diǎn)p為圓上一動(dòng)點(diǎn),定點(diǎn)A(-1,0),線段AP的垂直平分線與直線CP交于點(diǎn)M,則為點(diǎn)M的軌跡為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓C的方程為f(x,y)=0,點(diǎn)A(x0,y0)是圓外的一點(diǎn),那么方程f(x,y)-f(x0,y0)=0表示的曲線是(    )

A.與圓C重合的圓                             B.過(guò)點(diǎn)A與圓C相交的圓

C.過(guò)點(diǎn)A且與圓C同心的圓                  D.可能不是圓

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓C的方程為f(x,y)=0,點(diǎn)A(x0,y0)是圓外的一點(diǎn),那么方程f(x,y)-f(x0,y0)=0表示的曲線是(    )

A.與圓C重合的圓

B.過(guò)點(diǎn)A與圓C相交的圓

C.過(guò)點(diǎn)A且與圓C同心的圓

D.可能不是圓

查看答案和解析>>

同步練習(xí)冊(cè)答案