【題目】已知函數(shù)滿(mǎn)足如下條件:

①函數(shù)的最小值為,最大值為9

;

③若函數(shù)在區(qū)間上是單調(diào)函數(shù),則的最大值為2

試探究并解決如下問(wèn)題:

(Ⅰ)求,并求的值;

(Ⅱ)求函數(shù)的圖象的對(duì)稱(chēng)軸方程;

(Ⅲ)設(shè)是函數(shù)的零點(diǎn),求的值的集合.

【答案】(Ⅰ);(Ⅱ);(Ⅲ).

【解析】

(Ⅰ)由函數(shù)的最值結(jié)合三角函數(shù)的最值可求得,;由函數(shù)在區(qū)間上是單調(diào)函數(shù),則的最大值為2,可得,根據(jù)即可得;由,可得,驗(yàn)證即可得;再由函數(shù)周期性即可得;

(Ⅱ)由題意結(jié)合三角函數(shù)的性質(zhì)可令,化簡(jiǎn)即可得解;

(Ⅲ)由題意可得,進(jìn)而可得,

,或,化簡(jiǎn)后代入,分別求解即可.

(Ⅰ)因?yàn)?/span>,

所以,,

所以,

所以

設(shè)的最小正周期為,

因?yàn)?/span>在區(qū)間上是單調(diào)函數(shù),則的最大值為2

所以,所以,所以

所以

因?yàn)?/span>,所以

所以,即

因?yàn)?/span>,所以

,則,此時(shí),不合題意;

,則,此時(shí),符合題意;

所以

所以

因?yàn)?/span>的最小正周期為4,

所以

(Ⅱ)由(Ⅰ)知

,得

所以函數(shù)的對(duì)稱(chēng)軸方程是

(Ⅲ)令,則,所以函數(shù)的零點(diǎn)都滿(mǎn)足:

因?yàn)?/span>,是函數(shù)的零點(diǎn),所以,

,或,

,或,

所以

,

的值的集合為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】通過(guò)隨機(jī)詢(xún)問(wèn)110名性別不同的大學(xué)生是否愛(ài)好某項(xiàng)運(yùn)動(dòng),得到如下的列聯(lián)表:

總計(jì)

愛(ài)好

40

20

60

不愛(ài)好

20

30

50

總計(jì)

60

50

110

算得,

0.050

0.010

0.001

3.841

6.635

10.828

參照附表,得到的正確結(jié)論是 (   )

A. 在犯錯(cuò)誤的概率不超過(guò)1%的前提下,認(rèn)為“愛(ài)好該項(xiàng)運(yùn)動(dòng)與性別有關(guān)”

B. 在犯錯(cuò)誤的概率不超過(guò)1%的前提下,認(rèn)為“愛(ài)好該項(xiàng)運(yùn)動(dòng)與性別無(wú)關(guān)”

C. 有99.9%以上的把握認(rèn)為“愛(ài)好該項(xiàng)運(yùn)動(dòng)與性別有關(guān)”

D. 有99.9%以上的把握認(rèn)為“愛(ài)好該項(xiàng)運(yùn)動(dòng)與性別無(wú)關(guān)”

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某個(gè)調(diào)查小組在對(duì)人們的休閑方式的一次調(diào)查中,共調(diào)查了150人,其中男性45人,女性55人。女性中有35人主要的休閑方式是室內(nèi)活動(dòng),另外20人主要的休閑方式是室外運(yùn)動(dòng);男性中15人主要的休閑方式是室內(nèi)活動(dòng),另外30人主要的休閑方式是室外運(yùn)動(dòng)。

參考數(shù)據(jù):

0.05

0.025

0.010

0.005

0.001

3.841

5.024

6.635

7.879

10.828

(1)根據(jù)以上數(shù)據(jù)建立一個(gè)的列聯(lián)表;

(2)能否在犯錯(cuò)誤的概率不超過(guò)0.005的前提下認(rèn)為休閑方式與性別有關(guān)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)求曲線(xiàn)在點(diǎn)處的切線(xiàn)方程;

(2)若在區(qū)間上恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,橢圓關(guān)于坐標(biāo)軸對(duì)稱(chēng),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸的正半軸為極軸建立極坐標(biāo)系, , 為橢圓上兩點(diǎn).

(1)求直線(xiàn)的直角坐標(biāo)方程與橢圓的參數(shù)方程;

(2)若點(diǎn)在橢圓上,且點(diǎn)在第一象限內(nèi),求四邊形面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)中心在原點(diǎn),焦點(diǎn)在軸上的橢圓過(guò)點(diǎn),且離心率為的右焦點(diǎn),上一點(diǎn),軸,的半徑為

1)求的方程;

2)若直線(xiàn)交于兩點(diǎn),與交于兩點(diǎn),其中在第一象限,是否存在使?若存在,求的方程;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在某中學(xué)舉行的物理知識(shí)競(jìng)賽中,將三個(gè)年級(jí)參賽學(xué)生的成績(jī)?cè)谶M(jìn)行整理后分成5組,繪制出如圖所示的須率分布直方圖,圖中從左到右依次為第一、第二、第三、第四、第五小組.已知第三小組的頻數(shù)是15.

1)求成績(jī)?cè)?/span>50-70分的頻率是多少

2)求這三個(gè)年級(jí)參賽學(xué)生的總?cè)藬?shù)是多少:

3)求成績(jī)?cè)?/span>80-100分的學(xué)生人數(shù)是多少

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知線(xiàn)段AB的端點(diǎn)B的坐標(biāo)為(3,0),端點(diǎn)A在圓上運(yùn)動(dòng);

(1)求線(xiàn)段AB中點(diǎn)M的軌跡方程;

(2)過(guò)點(diǎn)C(1,1)的直線(xiàn)m與M的軌跡交于G、H兩點(diǎn),求以弦GH為直徑的圓的面積最小值及此時(shí)直線(xiàn)m的方程.

(3)若點(diǎn)C(1,1),且P在M軌跡上運(yùn)動(dòng),求的取值范圍.(O為坐標(biāo)原點(diǎn))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知三棱錐,,、、兩兩垂直,是三棱錐外接球面上一動(dòng)點(diǎn),則到平面的距離的最大值是( )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案