如圖所示,在長方體中,AB=AD=1,AA1=2,M是棱CC1的中點(diǎn)
(Ⅰ)求異面直線A1M和C1D1所成的角的正切值;
(Ⅱ)證明:平面ABM⊥平面A1B1M1
 
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題


19. (本小題滿分13分)
如右圖所示,已知正方形和矩形所在的平面互相垂直,AF = 1,M是線段的中點(diǎn).
(1)求證:平面
(2)求證:平面;
(3)求二面角的大小.
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,圓柱內(nèi)有一個(gè)三棱柱,三棱柱的底面為圓柱底面的內(nèi)接三角形,且AB是圓O直徑。

(Ⅰ)證明:平面平面;
(Ⅱ)設(shè)AB=,在圓柱內(nèi)隨機(jī)選取一點(diǎn),記該點(diǎn)取自于三棱柱內(nèi)的概率為。
(i)當(dāng)點(diǎn)C在圓周上運(yùn)動(dòng)時(shí),求的最大值;
(ii)記平面與平面所成的角為,當(dāng)取最大值時(shí),求的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

.(本小題滿分12分)在右圖所示的多面體中,                               
下部為正方體, 點(diǎn)的延長線上,
,、分別為的重心.
(1)已知為棱上任意一點(diǎn),求證:∥面;
(2)求二面角的大小.  

  
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題



本題滿分15分)如圖,在矩形中,點(diǎn)分別
在線段上,.沿直線
翻折成,使平面. 
(Ⅰ)求二面角的余弦值;
(Ⅱ)點(diǎn)分別在線段上,若沿直線將四
邊形向上翻折,使重合,求線段
的長。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖5,是半徑為a的半圓,AC為直徑,點(diǎn)E為的中點(diǎn),點(diǎn)B和點(diǎn)C為線段AD的三等分點(diǎn).平面AEC外一點(diǎn)F滿足,F(xiàn)E=a .

圖5
(1)證明:EB⊥FD;
(2)已知點(diǎn)Q,R分別為線段FE,FB上的點(diǎn),使得,求平面與平面所成二面角的正弦值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

斜三棱柱ABC- A1B1C1中,二面角C-A1A-B為120°,側(cè)棱AA1于另外兩條棱的距離分別為7cm、8cm,AA1=12cm,則斜三棱柱的側(cè)面積為______      .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在棱長為1的正方體中,分別為棱的中點(diǎn),是側(cè)面的中心,則空間四邊形在正方體的六個(gè)面上的射影圖形面積的最大值是( )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

一個(gè)正方體紙盒展開后如圖,在原正方體紙盒中有下列結(jié)論:
① 
② 角;
③ 是異面直線;

其中正確結(jié)論的序號是___________.

查看答案和解析>>

同步練習(xí)冊答案