橢圓
x2
a2
+
y2
b2
=1
(a>b>0)的兩焦點分別為F1、F2,以F1F2為邊作正三角形,若正三角形的第三個頂點恰好是橢圓短軸的一個端點,則橢圓的離心率為( 。
分析:根據(jù)題意可得:正三角形的邊長為2c,所以b=
3
c,可得a=
c2+b2
=2c
,進而根據(jù)a與c的關(guān)系求出離心率.
解答:解:因為以F1F2為邊作正三角形,
所以正三角形的邊長為2c,
又因為正三角形的第三個頂點恰好是橢圓短軸的一個端點,
所以b=
3
c,
所以a=
c2+b2
=2c
,
所以e=
c
a
=
1
2

故選A.
點評:本題考查橢圓的性質(zhì)和應(yīng)用,解題時要認真審題,仔細解答.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
a2
+
y2
b
=1(a>b>0)
的左、右焦點分別為F1、F2,離心率e=
2
2
,右準線方程為x=2.
(1)求橢圓的標準方程;
(2)過點F1的直線l與該橢圓交于M、N兩點,且|
F2M
+
F2N
|=
2
26
3
,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,橢圓
x2
a2
+
y2
b 
=1(a>b>0)與過點A(2,0)B(0,1)的直線有且只有一個公共點T,且橢圓的離心率e=
3
2

(Ⅰ)求橢圓方程;
(Ⅱ)設(shè)F1、F2分別為橢圓的左、右焦點,求證:|AT|2=
1
2
|AF1||AF2|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,橢圓
x2
a2
+
y2
b 
=1(a>b>0)與過點A(2,0)B(0,1)的直線有且只有一個公共點T,且橢圓的離心率e=
3
2

(Ⅰ)求橢圓方程;
(Ⅱ)設(shè)F1、F2分別為橢圓的左、右焦點,M為線段AF1的中點,求證:∠ATM=∠AF1T.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè) A(x1,y1)、B(x2,y2)是橢圓
x2
a2
+
y2
b2
=1
(a>b>0)上的兩點,O為坐標原點,向量
m
=(
x1
a
,
y1
b
),
n
=(
x2
a
y2
b
)
m
n
=0

(1)若A點坐標為(a,0),求點B的坐標;
(2)設(shè)
OM
=cosθ•
OA
+sinθ•
OB
,證明點M在橢圓上;
(3)若點P、Q為橢圓 上的兩點,且
PQ
OB
,試問:線段PQ能否被直線OA平分?若能平分,請加以證明;若不能平分,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:四川 題型:解答題

已知橢圓
x2
a2
+
y2
b
=1(a>b>0)
的左、右焦點分別為F1、F2,離心率e=
2
2
,右準線方程為x=2.
(1)求橢圓的標準方程;
(2)過點F1的直線l與該橢圓交于M、N兩點,且|
F2M
+
F2N
|=
2
26
3
,求直線l的方程.

查看答案和解析>>

同步練習(xí)冊答案