【題目】已知為坐標(biāo)原點(diǎn),橢圓:上頂點(diǎn)為,右頂點(diǎn)為,離心率,圓:與直線相切.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若,,為橢圓上的三個動點(diǎn),直線,,的斜率分別為.
(i)若的中點(diǎn)為,求直線的方程;
(ii)若,證明:直線過定點(diǎn).
【答案】(1);(2)(i);(ii)證明見解析.
【解析】
(1)由離心率和直線AB與圓相切分別得到a,b的關(guān)系式,求解得橢圓的方程;
(2)(i)由點(diǎn)差法求出直線EF的斜率,然后寫出方程;
(ⅱ)由直線DE、DF與橢圓的相交關(guān)系,分別求出E、F兩點(diǎn)的橫坐標(biāo),再利用,求得,另設(shè)直線的方程為,代入橢圓方程,利用韋達(dá)定理表示,求得,故得結(jié)論直線EF過定點(diǎn).
解:(1)由題意,直線的方程為:,即為,
因?yàn)閳A與直線相切,所以,①
設(shè)橢圓的半焦距為,因?yàn)?/span>,,
所以②
由①②得:,,所以橢圓的標(biāo)準(zhǔn)方程為:.
(2)設(shè),,,
(i)由題知:,,
兩式做差得:,,
整理得:,
所以此時直線的方程為:;
(ii)設(shè)直線:,設(shè)直線:,
將代入,
得:,
所以,,
因此.
又因?yàn)?/span>,且同理可得:,
可得,
設(shè)直線的方程為:,將代入,
得:,
得,所以,
所以直線過定點(diǎn).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的不等式的解集中的整數(shù)解恰好有三個,則實(shí)數(shù)a的取值范圍是______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某產(chǎn)品的廣告支出(單位:萬元)與銷售收入(單位:萬元)之間有下表所對應(yīng)的數(shù)據(jù):
廣告支出(單位:萬元) | 1 | 2 | 3 | 4 |
銷售收入(單位:萬元) | 12 | 28 | 42 | 56 |
(1)畫出表中數(shù)據(jù)的散點(diǎn)圖;
(2)求出對的線性回歸方程;
(3)若廣告費(fèi)為9萬元,則銷售收入約為多少萬元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)是連續(xù)的偶函數(shù),且時, 是單調(diào)函數(shù),則滿足的所有之積為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的兩個焦點(diǎn)分別為,離心率為.設(shè)過點(diǎn)的直線與橢圓相交于不同兩點(diǎn), 周長為.
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)已知點(diǎn),證明:當(dāng)直線變化時,總有TA與的斜率之和為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖①,在直角梯形中,,,,點(diǎn)是邊的中點(diǎn),將沿折起,使平面平面,連接,,,得到如圖②所示的幾何體.
(1)求證:平面;
(2)若,二面角的平面角的正切值為,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】先后2次拋擲一枚骰子,將得到的點(diǎn)數(shù)分別記為,.
(1)求直線與圓相切的概率;
(2)將,,5的值分別作為三條線段的長,求這三條線段能圍成等腰三角形的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知平行四邊形中,,,,是線段的中點(diǎn),現(xiàn)沿進(jìn)行翻折,使得與重合,得到如圖所示的四棱錐.
(1)證明:平面;
(2)若是等邊三角形,求平面和平面所成的銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某重點(diǎn)中學(xué)高三的一名學(xué)生在高考前對他在高三近一年中的所有數(shù)學(xué)考試(含模擬考試、月考、平時訓(xùn)練等各種類型的試卷)分?jǐn)?shù)進(jìn)行統(tǒng)計(jì),以此來估計(jì)自己在高考中的大致分?jǐn)?shù).為此,隨機(jī)抽取了若干份試卷作為樣本,根據(jù)此樣本數(shù)據(jù)作出如下頻率分布統(tǒng)計(jì)表和頻率分布直方圖.
分組 | 頻數(shù) | 頻率 |
20 | 0.25 | |
50 | ||
4 | 0.05 |
(1)求表中的值和頻率分布直方圖中的值;
(2)若同組中的每個數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代替,試根據(jù)頻率分布直方圖求該學(xué)生高三年級數(shù)學(xué)考試分?jǐn)?shù)的中位數(shù)和平均數(shù),并對該學(xué)生自己在高考中的數(shù)學(xué)成績進(jìn)行預(yù)測.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com