【題目】如圖,某人打算做一個(gè)正四棱錐形的金字塔模型,先用木料搭邊框,再用其他材料填充,已知金字塔的每一條棱和邊都相等.

(1)求證:直線AC垂直于直線SD

(2)若搭邊框共使用木料24米,則需要多少立方米的填充材料才能將整個(gè)金字塔內(nèi)部填滿?

【答案】1)見解析;(2

【解析】

1)連結(jié)AC,BD,由正方形的性質(zhì)得出ACBD,由等腰三角形三線合一得出ACSO故而AC⊥平面SBD,于是ACSD;(2)正四棱錐的棱長(zhǎng)為3,計(jì)算棱錐的高和底面積,代入體積公式計(jì)算四棱錐的體積.

1)連接AC,BD交于點(diǎn)O,則O為線段BD中點(diǎn),

四邊形ABCD是正方形,ACBD

SBD中,,SOAC,

,平面SBD平面SBD,

AC平面SBD平面SBD,

ACSD.

2)由題意得正四棱錐邊長(zhǎng)為3米.

棱錐的高,

立方米,

答:需要立方米填充材料.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在發(fā)生某公共衛(wèi)生事件期間,有專業(yè)機(jī)構(gòu)認(rèn)為該事件在一段時(shí)間沒(méi)有發(fā)生在規(guī)模群體感染的標(biāo)志為連續(xù)10天,每天新增疑似病例不超過(guò)7”.根據(jù)過(guò)去10天甲、乙、丙、丁四地新增疑似病例數(shù)據(jù),一定符合該標(biāo)志的是

A. 甲地:總體均值為3,中位數(shù)為4 B. 乙地:總體均值為1,總體方差大于0

C. 丙地:中位數(shù)為2,眾數(shù)為3 D. 丁地:總體均值為2,總體方差為3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的非負(fù)半軸為極軸建立極坐標(biāo)系,圓的極坐標(biāo)方程為,直線與圓交于 兩點(diǎn).

(1)求圓的直角坐標(biāo)方程及弦的長(zhǎng);

(2)動(dòng)點(diǎn)在圓上(不與 重合),試求的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】4個(gè)不同的紅球和6個(gè)不同的白球放入同一個(gè)袋中,現(xiàn)從中取出4個(gè)球.

1)若取出的紅球的個(gè)數(shù)不少于白球的個(gè)數(shù),則有多少不同的取法?

2)取出一個(gè)紅球記2分,取出一個(gè)白球記1分,若取出4個(gè)球所得總分不少于5分,則有多少種不同取法.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)(其中

(1)求的單調(diào)減區(qū)間;

(2)當(dāng)時(shí),恒成立,求的取值范圍;

(3)設(shè) 只有兩個(gè)零點(diǎn)),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)棱柱是正四棱柱的充要條件是(

A.底面是正方形,有兩個(gè)側(cè)面是矩形B.底面是正方形,有兩個(gè)側(cè)面垂直底面

C.底面是正方形,相鄰兩個(gè)側(cè)面是矩形D.每個(gè)側(cè)面都是全等的矩形

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】艾滋病是一種危害性極大的傳染病,由感染艾滋病病毒病毒引起,它把人體免疫系統(tǒng)中最重要的CD4T淋巴細(xì)胞作為主要攻擊目標(biāo),使人體喪失免疫功能下表是近八年來(lái)我國(guó)艾滋病病毒感染人數(shù)統(tǒng)計(jì)表:

年份

2011

2012

2013

2014

2015

2016

2017

2018

年份代碼x

1

2

3

4

5

6

7

8

感染者人數(shù)單位:萬(wàn)人

85

請(qǐng)根據(jù)該統(tǒng)計(jì)表,畫出這八年我國(guó)艾滋病病毒感染人數(shù)的折線圖;

請(qǐng)用相關(guān)系數(shù)說(shuō)明:能用線性回歸模型擬合yx的關(guān)系;

建立y關(guān)于x的回歸方程系數(shù)精確到,預(yù)測(cè)2019年我國(guó)艾滋病病毒感染人數(shù).

參考數(shù)據(jù):;,,,

參考公式:相關(guān)系數(shù),

回歸方程中, ,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】平面內(nèi)與兩定點(diǎn)連線的斜率之積等于非零常數(shù)的點(diǎn)的軌跡,加上、兩點(diǎn)所成的曲線可以是圓、橢圓或雙曲線,給出以下四個(gè)結(jié)論:①當(dāng)時(shí),曲線是一個(gè)圓;②當(dāng)時(shí),曲線的離心率為;③當(dāng)時(shí),曲線的漸近線方程為;④當(dāng)曲線的焦點(diǎn)坐標(biāo)分別為時(shí),的范圍是.其中正確的結(jié)論序號(hào)為_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C上的點(diǎn)到右焦點(diǎn)F的最大距離為,離心率為

求橢圓C的方程;

如圖,過(guò)點(diǎn)的動(dòng)直線l交橢圓CM,N兩點(diǎn),直線l的斜率為A為橢圓上的一點(diǎn),直線OA的斜率為,且,B是線段OA延長(zhǎng)線上一點(diǎn),且過(guò)原點(diǎn)O作以B為圓心,以為半徑的圓B的切線,切點(diǎn)為,求取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案