(本小題滿分12分)濟(jì)南市有大明湖、趵突泉、千佛山、園博園4個旅游景點(diǎn),一位客人瀏覽這四個景點(diǎn)的概率分別是0.3,0.4,0.5,0.6,且客人是否游覽哪個景點(diǎn)互不影響,設(shè)表示客人離開該城市時游覽的景點(diǎn)數(shù)與沒有游覽的景點(diǎn)數(shù)之差的絕對值。(1)求=0對應(yīng)的事件的概率; (2)求的分布列及數(shù)學(xué)期望。
(Ⅰ)   (Ⅱ) 1.48 
(1)分別記“客人游覽大明湖景點(diǎn)”,“客人游覽趵突泉景點(diǎn)”,“客人游覽千佛山景點(diǎn)”,“客人游覽園博園景點(diǎn)”為事件A1,A2,A3,A4。
由已知A1,A2,A3,A4相互獨(dú)立,
 ………………2分
客人游覽景點(diǎn)數(shù)的可能取值為0。1,2,3,4。相應(yīng)地,客人沒有游覽的景點(diǎn)數(shù)的可能取值為4,3,2,1,0,所以的可能取值為0,2,4。 ………………3分

 ………………6分
(2)  ………………8分

所以的分布列為

0
2
4
P
0.38
0.5
0.12
                                     ………10分
E=1.48.………12分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
班主任為了對本班學(xué)生的考試成績進(jìn)行分析,決定從全班25位女同學(xué),15位男同學(xué)中隨機(jī)抽取一個容量為8的樣本進(jìn)行分析.
(1)如果按性別比例分層抽樣,可以得到多少個不同的樣本(只要求寫出算式即可,不必計(jì)算出結(jié)果);
(2)隨機(jī)抽取8位同學(xué),數(shù)學(xué)分數(shù)依次為:60,65,70,75,80,85,90,95;
物理成績依次為:72,77,80,84,88,90,93,95,
①若規(guī)定90分(含90分)以上為優(yōu)秀,記為這8位同學(xué)中數(shù)學(xué)和物理分?jǐn)?shù)均為優(yōu)秀的人數(shù),求的分布列和數(shù)學(xué)期望;
②若這8位同學(xué)的數(shù)學(xué)、物理分?jǐn)?shù)事實(shí)上對應(yīng)下表:
學(xué)生編號
1
2
3
4
5
6
7
8
數(shù)學(xué)分?jǐn)?shù)
60
65
70
75
80
85
90
95
物理分?jǐn)?shù)
72
77
80
84
88
90
93
95
 
根據(jù)上表數(shù)據(jù)可知,變量之間具有較強(qiáng)的線性相關(guān)關(guān)系,求出的線性回歸方程(系數(shù)精確到0.01).(參考公式:,其中,;參考數(shù)據(jù):,,,,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某項(xiàng)競賽分別為初賽、復(fù)賽、決賽三個階段進(jìn)行,每個階段選手要回答一個問題.規(guī)定正確回答問題者進(jìn)入下一階段競賽,否則即遭淘汰.已知某選手通過初賽、復(fù)賽、決賽的概率分別是,且各階段通過與否相互獨(dú)立.
(I)求該選手在復(fù)賽階段被淘汰的概率;
(II)設(shè)該選手在競賽中回答問題的個數(shù)為,求的分布列、數(shù)學(xué)期望和方差.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某射擊運(yùn)動員為爭取獲得2010年廣州亞運(yùn)會的參賽資格正在加緊訓(xùn)練.已知在某次訓(xùn)練中他射擊了槍,每一槍的射擊結(jié)果相互獨(dú)立,每槍成績不低于10環(huán)的概率為,設(shè)為本次訓(xùn)練中成績不低于10環(huán)的射擊次數(shù),的數(shù)學(xué)期望,方差.
(1)求的值;
(2)訓(xùn)練中教練要求:若有5槍或5槍以上成績低于10環(huán),則需要補(bǔ)射,求該運(yùn)動員在本次訓(xùn)練中需要補(bǔ)射的概率.
(結(jié)果用分?jǐn)?shù)表示.已知:,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

盒內(nèi)有大小相同的9個球,其中2個紅色球,3個白色球,4個黑色球. 規(guī)定取出1個紅色球得1分,取出1個白色球得0分,取出1個黑色球得分 . 現(xiàn)從盒內(nèi)任取3個球.
(Ⅰ)求取出的3個球顏色互不相同的概率;
(Ⅱ)求取出的3個球得分之和恰為1分的概率;
(Ⅲ)設(shè)為取出的3個球中白色球的個數(shù),求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某射手進(jìn)行射擊練習(xí),每射擊5發(fā)子彈算一組,一旦命中就停止射擊,并進(jìn)入下一組的練習(xí),否則一直打完5發(fā)子彈后才能進(jìn)入下一組練習(xí),若該射手在某組練習(xí)中射擊命中一次,并且已知他射擊一次的命中率為0.8,求在這一組練習(xí)中耗用子彈數(shù)的分布列,并求出的期望與方差(保留兩位小數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題


(Ⅰ)求該人在4次投擲中恰有三次投入紅袋的概率;
(Ⅱ)求該人兩次投擲后得分的數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)某陶瓷廠準(zhǔn)備燒制甲、乙、丙三件不同的工藝品,制作過程必須先后經(jīng)過兩次燒制,當(dāng)?shù)谝淮螣坪细窈蠓娇蛇M(jìn)入第二次燒制,兩次燒制過程相互獨(dú)立.根據(jù)該廠現(xiàn)有的技術(shù)水平,經(jīng)過第一次燒制后,甲、乙、丙三件產(chǎn)品合格的概率依次為,,經(jīng)過第二次燒制后,甲、乙、丙三件產(chǎn)品合格的概率依次為,
(1)求第一次燒制后恰有一件產(chǎn)品合格的概率;(2)經(jīng)過前后兩次燒制后,合格工藝品的個數(shù)為,求隨機(jī)變量的期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
某公司為慶祝元旦舉辦了一次抽獎活動,現(xiàn)場準(zhǔn)備的抽獎箱里放置了分別標(biāo)有數(shù)字1000、800、600、0的四個球(球的大小相同).參與者隨機(jī)從抽獎箱里摸取一球(取后即放回),公司即贈送與此球上所標(biāo)數(shù)字等額的獎金(元),并規(guī)定摸到標(biāo)有數(shù)字0的球時可以再摸一次,但是所得獎金減半(若再摸到標(biāo)有數(shù)字0的球就沒有第三次摸球機(jī)會),求一個參與抽獎活動的人可得獎金的期望值是多少元.

查看答案和解析>>

同步練習(xí)冊答案