已知函數(shù)f(x)=log2(x+1),當(dāng)點 (x,y) 是函數(shù)y=f (x) 圖象上的點時,點是函數(shù)y=g(x) 圖象上的點.
(1)寫出函數(shù)y=g (x) 的表達(dá)式;
(2)當(dāng)g(x)-f (x)≥0時,求x的取值范圍;
(3)當(dāng)x在 (2)所給范圍內(nèi)取值時,求g(x)-f(x)的最大值.
【答案】分析:(1)令 =X,=Y,由題設(shè)條件知 Y=log2(3X+1),再由(X,Y)是函數(shù)y=g(x)的圖象上的點,即可得到函數(shù)y=g(x)的解析式.
(2)由題意知 .由對數(shù)函數(shù)的性質(zhì)可得 ,解不等式組即可得到使g(x)>f(x)的x的取值范圍.
(3)由題設(shè)條件知 .由此可知結(jié)合基本不等式即可求出g(x)-f(x)在[0,1]上的最大值.
解答:解:(1)令X=,Y=
∴x=3X,y=2Y,
∵點 (x,y) 是函數(shù)y=f (x) 圖象上,
∴2Y=log2(3X+1),
即Y=log2(3X+1),
∴g (x)=log2(3x+1)(x>-);
(2)由g(x)-f (x)≥0,得log2(3x+1)-log2(x+1)≥0,
,
解得0≤x≤1;
∴x的取值范圍為0≤x≤1;
(3)∵因為0≤x≤1,
所以
當(dāng)且僅當(dāng)3x+1=2時,即 x=時等號成立,
故g(x)-f(x)在[0,1]上的最大值為 =log23-
點評:本題考查的知識點是對數(shù)函數(shù)的圖象與性質(zhì)的綜合應(yīng)用,其中(1)中求解析式是坐標(biāo)法中的“點隨點動”問題,(2)中關(guān)鍵是根據(jù)對數(shù)函數(shù)的性質(zhì)構(gòu)造關(guān)于x的不等式組,(3)的關(guān)鍵是根據(jù)基本不等式,求出真數(shù)部分的最大值,進而根據(jù)對數(shù)函數(shù)的單調(diào)性,得到y(tǒng)=g(x)-f(x)的最大值.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2+2|lnx-1|.
(1)求函數(shù)y=f(x)的最小值;
(2)證明:對任意x∈[1,+∞),lnx≥
2(x-1)
x+1
恒成立;
(3)對于函數(shù)f(x)圖象上的不同兩點A(x1,y1),B(x2,y2)(x1<x2),如果在函數(shù)f(x)圖象上存在點M(x0,y0)(其中x0∈(x1,x2))使得點M處的切線l∥AB,則稱直線AB存在“伴侶切線”.特別地,當(dāng)x0=
x1+x2
2
時,又稱直線AB存在“中值伴侶切線”.試問:當(dāng)x≥e時,對于函數(shù)f(x)圖象上不同兩點A、B,直線AB是否存在“中值伴侶切線”?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2-bx的圖象在點A(1,f(1))處的切線l與直線x+3y-1=0垂直,若數(shù)列{
1
f(n)
}的前n項和為Sn,則S2012的值為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=xlnx
(Ⅰ)求函數(shù)f(x)的極值點;
(Ⅱ)若直線l過點(0,-1),并且與曲線y=f(x)相切,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
3
x
a
+
3
(a-1)
x
,a≠0且a≠1.
(1)試就實數(shù)a的不同取值,寫出該函數(shù)的單調(diào)增區(qū)間;
(2)已知當(dāng)x>0時,函數(shù)在(0,
6
)上單調(diào)遞減,在(
6
,+∞)上單調(diào)遞增,求a的值并寫出函數(shù)的解析式;
(3)記(2)中的函數(shù)圖象為曲線C,試問是否存在經(jīng)過原點的直線l,使得l為曲線C的對稱軸?若存在,求出直線l的方程;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案