已知函數(shù)f(x)=
lnx
x
的圖象為曲線(xiàn)C,函數(shù)g(x)=
1
2
ax+b
的圖象為直線(xiàn)l.
(Ⅰ) 設(shè)m>0,當(dāng)x∈(m,+∞)時(shí),證明:(x+m)ln
x
m
-2(x-m)>0

(Ⅱ) 設(shè)直線(xiàn)l與曲線(xiàn)C的交點(diǎn)的橫坐標(biāo)分別為x1,x2,且x1≠x2,求證:(x1+x2)g(x1+x2)>2.
分析:(Ⅰ)構(gòu)造函數(shù)H(x)=(x+m)ln
x
m
-2(x-m),x∈(m,+∞),通過(guò)導(dǎo)數(shù)法可研究出H(x)在x∈(m,+∞)單調(diào)遞增,而H(m)=0,從而可使結(jié)論得證;
(Ⅱ)可利用分析法,不妨設(shè)0<x1<x2,要證(x1+x2)g(x1+x2)>2,只需證(x1+x2)[
1
2
a(x1+x2)+b]>2,只需證(x1+x2)[
1
2
ax22+bx2-(
1
2
ax12+bx1)]>2(x2-x1),結(jié)合(Ⅰ)的結(jié)論即可使問(wèn)題解決.
解答:證明:(1)令H(x)=(x+m)ln
x
m
-2(x-m),x∈(m,+∞),
則H(m)=0,要證明(x+m)ln
x
m
-2(x-m)>0,
只需證H(x)=(x+m)ln
x
m
-2(x-m)>H(m),
∵H′(x)=ln
x
m
+
m
x
-1,
令G(x)=ln
x
m
+
m
x
-1,G′(x)=
1
x
-
m
x2
,
由G′(x)=
x-m
x2
>0得,x>m,
∴G(x)在x∈(m,+∞)單調(diào)遞增,
∴G(x)>G(m)=0
H'(x)>0,H(x)在x∈(m,+∞)單調(diào)遞增.
H(x)>H(m)=0,
∴H(x)=(x+m)ln
x
m
-2(x-m)>0,
(2)不妨設(shè)0<x1<x2,要證(x1+x2)g(x1+x2)>2,
只需證(x1+x2)[
1
2
a(x1+x2)+b]>2,
只需證(x1+x2)[
1
2
ax22+bx2-(
1
2
ax12+bx1)]>2(x2-x1),
lnx1
x1
=
1
2
ax1+b,
lnx2
x2
=
1
2
ax2+b,
即(x1+x2)ln
x2
x1
>2(x2-x1)(*),
而由(1)知(*)成立.
所以(x1+x2)g(x1+x2)>2
點(diǎn)評(píng):本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,構(gòu)造函數(shù)H(x)=(x+m)ln
x
m
-2(x-m),x∈(m,+∞)是關(guān)鍵,探討H(x)在x∈(m,+∞)單調(diào)遞增是難點(diǎn),突出考查分析法證題的作用,屬于難題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
1
3
x3-
3
2
ax2-(a-3)x+b

(1)若函數(shù)f(x)在P(0,f(0))的切線(xiàn)方程為y=5x+1,求實(shí)數(shù)a,b的值:
(2)當(dāng)a<3時(shí),令g(x)=
f′(x)
x
,求y=g(x)在[l,2]上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
1
2
x2-alnx
的圖象在點(diǎn)P(2,f(2))處的切線(xiàn)方程為l:y=x+b
(1)求出函數(shù)y=f(x)的表達(dá)式和切線(xiàn)l的方程;
(2)當(dāng)x∈[
1
e
,e]
時(shí)(其中e=2.71828…),不等式f(x)<k恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=lnx,g(x)=
12
x2+a
(a為常數(shù)),直線(xiàn)l與函數(shù)f(x)、g(x)的圖象都相切,且l與函數(shù)f(x)的圖象的切點(diǎn)的橫坐標(biāo)為1.
(1)求直線(xiàn)l的方程及a的值;
(2)當(dāng)k>0時(shí),試討論方程f(1+x2)-g(x)=k的解的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
13
x3+x2+ax

(1)討論f(x)的單調(diào)性;
(2)設(shè)f(x)有兩個(gè)極值點(diǎn)x1,x2,若過(guò)兩點(diǎn)(x1,f(x1)),(x2,f(x2))的直線(xiàn)l與x軸的交點(diǎn)在曲線(xiàn)y=f(x)上,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x3-
32
ax2+b
,a,b為實(shí)數(shù),x∈R,a∈R.
(1)當(dāng)1<a<2時(shí),若f(x)在區(qū)間[-1,1]上的最小值、最大值分別為-2、1,求a、b的值;
(2)在(1)的條件下,求經(jīng)過(guò)點(diǎn)P(2,1)且與曲線(xiàn)f(x)相切的直線(xiàn)l的方程;
(3)試討論函數(shù)F(x)=(f′(x)-2x2+4ax+a+1)•ex的極值點(diǎn)的個(gè)數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案