【題目】如圖,四邊形為矩形, 平面 .

(1)求證:

(2)若直線平面,試判斷直線與平面的位置關(guān)系,并說(shuō)明理由;

(3)若, ,求三棱錐的體積.

【答案】(1)見解析;(2)見解析;(3).

【解析】試題分析:(1)證明線線垂直,一般利用線面垂直判定與性質(zhì)定理,經(jīng)多次轉(zhuǎn)化得到.在轉(zhuǎn)化過(guò)程中注意利用平幾知識(shí).(2)實(shí)質(zhì)判斷平面平面之間關(guān)系,由線線平行可得線面平行,再由線面平行可得面面平行,(3)求三棱錐體積,關(guān)鍵確定高線,而尋找高的方法,一是利用等體積法進(jìn)行轉(zhuǎn)換,二是利用線面垂直.

試題解析:(1)因?yàn)?/span>底面, ,

所以底面,所以

又因?yàn)榈酌?/span>為矩形,所以,又因?yàn)?/span>,所以平面

所以.

(2)若直線平面,則直線平面,證明如下:

因?yàn)?/span>,且平面, 平面,所以平面.

在矩形中, ,且平面 平面,所以平面.

又因?yàn)?/span>,所以平面平面.

又因?yàn)橹本平面,所以直線平面.(3)易知,三棱錐的體積等于三棱錐的體積.

由(2)可知, 平面,又因?yàn)?/span>,所以平面

易知, 平面,所以點(diǎn)到平面的距離等于的長(zhǎng).

因?yàn)?/span>, ,所以

所以三棱錐的體積.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某研究性學(xué)習(xí)小組對(duì)春季晝夜溫差大小與某花卉種子發(fā)芽多少之間的關(guān)系進(jìn)行研究,他們分別記錄了3月1日至3月5日的每天晝夜溫差與實(shí)驗(yàn)室每天每100顆種子浸泡后的發(fā)芽數(shù),作了初步處理,得到下表:

日期

3月1日

3月2日

3月3日

3月4日

3月5日

溫差

10

11

13

12

9

發(fā)芽率(顆)

23

25

30

26

16

(1)從3月1日至3月5日中任選2天,記發(fā)芽的種子數(shù)分別為,求事件“均小于26”的概率;

(2)請(qǐng)根據(jù)3月1日至3月5日的數(shù)據(jù),求出關(guān)于的線性回歸方程,并預(yù)報(bào)3月份晝夜溫差為14度時(shí)實(shí)驗(yàn)室每天100顆種子浸泡后的發(fā)芽(取整數(shù)值).

附:回歸方程中的斜率和截距最小二乘法估計(jì)公式分別為:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)幾何體的三視圖如下圖所示,其中主視圖與左視圖是腰長(zhǎng)為6的等腰直角三角形,俯視圖是正方形

請(qǐng)畫出該幾何體的直觀圖,并求出它的體積;

用多少個(gè)這樣的幾何體可以拼成一個(gè)棱長(zhǎng)為6的正方體ABCDA1B1C1D1? 如何組拼?試證明你的結(jié)論;

的情形下,設(shè)正方體ABCDA1B1C1D1的棱CC1的中點(diǎn)為E, 求平面AB1E與平面ABC所成二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)求函數(shù)的單調(diào)區(qū)間;

(2)若,關(guān)于的方程有三個(gè)不同的實(shí)根,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,游客從某旅游景區(qū)的景點(diǎn)處下上至處有兩種路徑一種是從沿直線步行到另一種是先從沿索道乘纜車到,然后從沿直線步行到.現(xiàn)有甲、乙兩位游客從處下山,甲沿勻速步行,速度為.在甲出發(fā),乙從乘纜車到,處停留再?gòu)?/span>勻速步行到,假設(shè)纜車勻速直線運(yùn)動(dòng)的速度為,山路長(zhǎng)為1260,經(jīng)測(cè)量,

1求索道的長(zhǎng);

2問(wèn):乙出發(fā)多少,乙在纜車上與甲的距離最短?

3為使兩位游客在處互相等待的時(shí)間不超過(guò)乙步行的速度應(yīng)控制在什么范圍內(nèi)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本小題共13分)根據(jù)以往的成績(jī)記錄,甲、乙兩名隊(duì)員射擊擊中目標(biāo)靶的環(huán)數(shù)的頻率分布情況如圖所示

1)求上圖中的值;

2)甲隊(duì)員進(jìn)行一次射擊,求命中環(huán)數(shù)大于7環(huán)的概率(頻率當(dāng)作概率使用);

3)由上圖判斷甲、乙兩名隊(duì)員中,哪一名隊(duì)員的射擊成績(jī)更穩(wěn)定(結(jié)論不需證明)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在多面體中,是等邊三角形,是等腰直角三角形,,平面平面,平面,點(diǎn)的中點(diǎn),連接

(1)求證:平面;

(2)若,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)某大學(xué)的女生體重y(單位:kg)與身高x(單位:cm)具有線性相關(guān)關(guān)系,根據(jù)一組樣本數(shù)據(jù)(xi,yi)(i=1,2,…,n),用最小二乘法建立的回歸方程為=0.85x-85.71,則下列結(jié)論中不正確的是( )

A. yx具有正的線性相關(guān)關(guān)系

B. 若給變量x一個(gè)值,由回歸直線方程=0.85x-85.71得到一個(gè),則為該統(tǒng)計(jì)量中的估計(jì)值

C. 若該大學(xué)某女生身高增加1 cm,則其體重約增加0.85 kg

D. 若該大學(xué)某女生身高為170 cm,則可斷定其體重必為58.79 kg

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,從參加環(huán)保知識(shí)競(jìng)賽的學(xué)生中抽出60名,將其成績(jī)(均為整數(shù))整理后畫出的頻率分布直方圖如下:觀察圖形,回答下列問(wèn)題:

(1)這一組的頻數(shù)、頻率分別是多少?

(2)估計(jì)這次環(huán)保知識(shí)競(jìng)賽的及格率(60分及以上為及格).

查看答案和解析>>

同步練習(xí)冊(cè)答案