(本小題滿分12分)
設(shè)為奇函數(shù),其圖象在點(diǎn)處的切線與直線垂直,導(dǎo)函數(shù)的最小值為.
的值
.求函數(shù)的單調(diào)遞增區(qū)間,極大值和極小值,并求函數(shù)上的最大值與最小值.

解:為奇函數(shù),


的最小值為,zxxk

又直線的斜率為
因此,

,
列表如下








+

-

+


極大

極小

所以函數(shù)的單調(diào)遞增區(qū)間為

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)f(x)=x3+x2+ax+b,g(x)=x3+x2+ 1nx+b,(a,b為常數(shù)).
(1)若g(x)在x=l處的切線方程為y=kx-5(k為常數(shù)),求b的值;
(2)設(shè)函數(shù)f(x)的導(dǎo)函數(shù)為,若存在唯一的實(shí)數(shù)x0,使得f(x0)=x0與f′(x0)=0同時(shí)成立,求實(shí)數(shù)b的取值范圍;
(3)令F(x)=f(x)-g(x),若函數(shù)F(x)存在極值,且所有極值之和大于5+1n2,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)處都取得極值.
(1)求函數(shù)的解析式;
(2)求函數(shù)在區(qū)間[-2,2]的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

=                .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

已知函數(shù)的圖象在點(diǎn)處的切線恰好與直線平行,若在區(qū)間上單調(diào)遞減,則實(shí)數(shù)的取值范圍是        

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

已知函數(shù)滿足,且的導(dǎo)函數(shù),則的解集為         

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

某廠生產(chǎn)某種產(chǎn)品件的總成本(萬(wàn)元),又知產(chǎn)品單價(jià)的平方與產(chǎn)品件數(shù)成反比,生產(chǎn)100件這樣的產(chǎn)品的單價(jià)為50萬(wàn)元,則產(chǎn)量定為_(kāi)____________時(shí)總利潤(rùn)最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

曲線在點(diǎn)處的切線方程是              

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

已知函數(shù)f (x)在R上滿足f (x)=2·f (2-x)-x2+8x-8,則f (2)=       

查看答案和解析>>

同步練習(xí)冊(cè)答案