【題目】已知點(diǎn)P(4,2)是直線l被橢圓 所截得的線段的中點(diǎn),
(1)求直線l的方程
(2)求直線l被橢圓截得的弦長.

【答案】
(1)解:設(shè)直線l的方程為:y﹣2=k(x﹣4),交點(diǎn)A(x1,y1),B(x2,y2).

聯(lián)立 ,化為:(1+4k2)x2+8k(2﹣4k)x+4(2﹣4k)2﹣36=0.(*)

∴x1+x2= =8,解得k=﹣

∴直線l的方程為:x+2y﹣8=0


(2)解:把k=﹣ 代入方程(*)可得:x2﹣8x+14=0,

∴x1+x2=8,x1x2=14.

∴|AB|= = =


【解析】(1)設(shè)直線l的方程為:y﹣2=k(x﹣4),交點(diǎn)A(x1 , y1),B(x2 , y2).與橢圓方程聯(lián)立化為關(guān)于x的一元二次方程,再利用根與系數(shù)的關(guān)系、中點(diǎn)坐標(biāo)公式即可得出.(2)利用弦長公式即可得出.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在銳角三角形中,若,則的取值范圍是__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,內(nèi)角A,B,C所對(duì)的邊分別為a,b,c.已知a﹣c= b,sinB= sinC.
(1)求cosA的值;
(2)求cos(A+ )的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)命題p:函數(shù)y=kx+1在R上是增函數(shù),命題q:x∈R,x2+(2k﹣3)x+1=0,如果p∧q是假命題,p∨q是真命題,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若對(duì)任意的x∈[﹣1,2],都有x2﹣2x+a≤0(a為常數(shù)),則a的取值范圍是(
A.(﹣∞,﹣3]
B.(﹣∞,0]
C.[1,+∞)
D.(﹣∞,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=2﹣ (x>0),若存在實(shí)數(shù)m、n(m<n)使f(x)在區(qū)間(m,n)上的值域?yàn)椋╰m,tn),則實(shí)數(shù)t的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C1 +y2=1,橢圓C2以C1的長軸為短軸,且與C1有相同的離心率.
(1)求橢圓C2的方程;
(2)設(shè)O為坐標(biāo)原點(diǎn),點(diǎn)A,B分別在橢圓C1和C2上, ,求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在正方體ABCD﹣A1B1C1D1中,則異面直線AD1與A1C1所成角的余弦值是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,經(jīng)過點(diǎn) 且斜率為k的直線l與橢圓 有兩個(gè)不同的交點(diǎn)P和Q.
(Ⅰ)求k的取值范圍;
(Ⅱ)設(shè)橢圓與x軸正半軸、y軸正半軸的交點(diǎn)分別為A,B,是否存在常數(shù)k,使得向量 共線?如果存在,求k值;如果不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案