(本小題滿分12分)
已知三棱柱
中,三個側面均為矩形,底面
為等腰直角三角形,
,點
為棱
的中點,點
在棱
上運動.
(1)求證
;
(II)當點
運動到某一位置時,恰好使二面角
的平面角的余弦值為
,求點
到平面
的距離;
(III)在(II)的條件下,試確定線段
上是否存在一點
,使得
平面
?若存在,確定其位置;若不存在,說明理由.
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題共13分)
已知正方形
ABCD的邊長為1,
.將正方形
ABCD沿對角線
折起,使
,得到三棱錐
A—BCD,如圖所示.
(I)若點
M是棱
AB的中點,求證:
OM∥平面
ACD;
(II)求證:
;
(III)求二面角
的余弦值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分13分)
如圖,平行四邊形
中,
,
,且
,正方形
所在平面與平面
垂直,
分別是
的中點.
(1)求證:
;
(2)求證:
平面
;
(3)求三棱錐
的體積.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分14分)如圖,在三棱錐
中,
底面
,
點
,
分別在棱
上,且
(1)求證:
平面
;
(2)當
為
的中點時,求
與平面
所成的角的正弦值;
(3)是否存在點
使得二面角
為直二面角?并說明理由.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分12分)
如圖,
為圓
的直徑,點
、
在圓
上,且
,矩形
所在的平面和圓
所在的平面互相垂直,且
,
.
(Ⅰ)求四棱錐
的體積
;(Ⅱ)求證:平面
平面
;
(Ⅲ)在線段
上是否存在一點
,使得
平面
,并說明理由.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分14分)
如圖,在四棱錐
中,
,
,底面
是菱形,且
,
為
的中點.
(Ⅰ)證明:
平面
;
(Ⅱ)側棱
上是否存在點
,使得
平面
?并證明你的結論.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知三棱錐
的四個頂點均在半徑為
的球面上,且滿足
,
,
,則三棱錐
的側面積的最大值為
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
如圖,空間有兩個正方形
ABCD和
ADEF,M、N分別為
BD、AE的中點,則以下結論中正確的是
(填寫所
有正確結論對應的序號)①
MN⊥
AD;
②
MN與
BF的是對異面直線;
③
MN//平面
ABF ④
MN與
AB的所成角為60°
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
在正方體上任意選擇4個頂點,它們可能是如下幾何體的4個頂點,請寫出所有符合題意的幾何體的序號 .
①矩形 ②不是矩形的平行四邊形
③有三個面為等腰直角三角形,另一個面為等邊三角形的四面體
④每個面都是等邊三角形的四面體
⑤每個面都是直角三角形的四面體
查看答案和解析>>