(本小題共13分)
已知正方形ABCD的邊長(zhǎng)為1,.將正方形ABCD沿對(duì)角線折起,使,得到三棱錐ABCD,如圖所示.
(I)若點(diǎn)M是棱AB的中點(diǎn),求證:OM∥平面ACD;
(II)求證:;
(III)求二面角的余弦值.

(1)略
(2)略
(3)
解:(I)在正方形ABCD中,是對(duì)角線的交點(diǎn),
OBD的中點(diǎn),                                             ---------------------1分
MAB的中點(diǎn),
 OMAD.                                                  ---------------------2分
AD平面ACD,OM平面ACD,                             ---------------------3分
OM∥平面ACD.                                             ---------------------4分
(II)證明:在中,,              ---------------------5分
.                         ---------------------6分
 是正方形ABCD的對(duì)角線,
,                                               --------------------7分
.                           --------------------8分
(III)由(II)知,則OC,OA,OD兩兩互相垂直,如圖,以O為原點(diǎn),建立
空間直角坐標(biāo)系.
,               
是平面的一個(gè)法向量.                     --------------------9分
,,                      
設(shè)平面的法向量,則.
,                              --------------------11分
所以,,解得.
--------------------12分
從而,二面角的余弦值為..
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(14 分)如圖(1)是一正方體的表面展開圖,MN 和PB 是兩條面對(duì)角線,請(qǐng)?jiān)趫D(2)的正方體中將MN 和PB 畫出來,并就這個(gè)正方體解決下面問題。

(1)求證:MN//平面PBD;
(2)求證:AQ⊥平面PBD;
(3)求二面角P—DB—M 的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分13分)
  已知:如圖,長(zhǎng)方體中,分別是棱,上的點(diǎn),,.
  (1) 求異面直線所成角的余弦值;
 。2) 證明平面
 。3) 求二面角的正弦值.
                  

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
如圖,正方形ADEF和等腰梯形ABCD垂直,已知BC=2AD=4,,
(I)求證:面ABF;
(II)求異面直線BE與AC所成的角的余弦值;
(III)在線段BE上是否存在一點(diǎn)P,使得平面平面BCEF?若存在,求出 的值,若不存在,請(qǐng)說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在矩形ABCD中,AB=2,BC=a,又PA⊥平面ABCD,PA=4.     
(Ⅰ)若在邊BC上存在一點(diǎn)Q,使PQ⊥QD,求a的取值范圍;
(Ⅱ)當(dāng)邊BC上存在唯一點(diǎn)Q,使PQ⊥QD時(shí),求二面角A-PD-Q的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如下圖所示,正方體ABCD-A1B1C1D1的棱長(zhǎng)為1,若E、F分別是BC、DD1中點(diǎn),則B1到平面ABF的距離為 (  )
(A)                 (B)                     
(C)                 (D)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分15分)
如圖5,在底面為直角梯形的四棱錐中,,,,

(1)求證:;
(2)求直線;
(3)設(shè)點(diǎn)E在棱PC上,,若,求的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
已知三棱柱中,三個(gè)側(cè)面均為矩形,底面為等腰直角三角形, ,點(diǎn)為棱的中點(diǎn),點(diǎn)在棱上運(yùn)動(dòng).

(1)求證
(II)當(dāng)點(diǎn)運(yùn)動(dòng)到某一位置時(shí),恰好使二面角的平面角的余弦值為,求點(diǎn)到平面的距離;
(III)在(II)的條件下,試確定線段上是否存在一點(diǎn),使得平面?若存在,確定其位置;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在直三棱柱ABC-A1B1C1中∠ACB=90°, AA1="2," AC=BC=1,則異面直線A1B與AC所成角的余弦值是           

查看答案和解析>>

同步練習(xí)冊(cè)答案