【題目】如表是我國2012年至2018年國內生產總值(單位:萬億美元)的數(shù)據(jù):
年份 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 |
年份代號 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
國內生產總值 (單位:萬億美元) | 8.5 | 9.6 | 10.4 | 11 | 11.1 | 12.1 | 13.6 |
(1)從表中數(shù)據(jù)可知和線性相關性較強,求出以為解釋變量為預報變量的線性回歸方程;
(2)已知美國2018年的國內生產總值約為20.5萬億美元,用(1)的結論,求出我國最早在那個年份才能趕上美國2018年的國內生產總值?
參考數(shù)據(jù):,
參考公式:回歸方程中斜率和截距的最小二乘估計公式分別為:
,.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,點C在以AB為直徑的圓上運動,PA⊥平面ABC,且PA=AC,D,E分別是PC,PB的中點.
(1)求證:PC⊥平面ADE.
(2)若二面角C﹣AE﹣B為60°,求直線AB與平面ADE所成角的大。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某研究所開發(fā)了一種新藥,測得成人注射該藥后血藥濃度y(微克/毫升)與給藥時間x(小時)之間的若干組數(shù)據(jù),并由此得出y與x之間的一個擬合函數(shù)y=40(0.6x﹣0.62x)(x∈[0,12]),其簡圖如圖所示.試根據(jù)此擬合函數(shù)解決下列問題:
(1)求藥峰濃度與藥峰時間(精確到0.01小時),并指出血藥濃度隨時間的變化趨勢;
(2)求血藥濃度的半衰期(血藥濃度從藥峰濃度降到其一半所需要的時間)(精確到0.01小時).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】基于移動網(wǎng)絡技術的共享單車被稱為“新四大發(fā)明”之一,短時間內就風靡全國,給人們帶來新的出行體驗,某共享單車運營公司的市場研究人員為了了解公司的經營狀況,對公司最近6個月的市場占有率進行了統(tǒng)計,結果如下表:
月份 | 2018.11 | 2018.12 | 2019.01 | 2019.02 | 2019.03 | 2019.04 |
月份代碼 | 1 | 2 | 3 | 4 | 5 | 6 |
11 | 13 | 16 | 15 | 20 | 21 |
(1)請用相關系數(shù)說明能否用線性回歸模型擬合與月份代碼之間的關系.如果能,請計算出關于的線性回歸方程,如果不能,請說明理由;
(2)根據(jù)調研數(shù)據(jù),公司決定再采購一批單車擴大市場,從成本1000元/輛的型車和800元/輛的型車中選購一種,兩款單車使用壽命頻數(shù)如下表:
車型 報廢年限 | 1年 | 2年 | 3年 | 4年 | 總計 |
10 | 30 | 40 | 20 | 100 | |
15 | 40 | 35 | 10 | 100 |
經測算,平均每輛單車每年能為公司帶來500元的收入,不考慮除采購成本以外的其它成本,假設每輛單車的使用壽命都是整數(shù)年,用頻率估計每輛車使用壽命的概率,以平均每輛單車所產生的利潤的估計值為決策依據(jù),如果你是公司負責人,會選擇哪款車型?
參考數(shù)據(jù):,,,.
參考公式:相關系數(shù),,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線:的焦點為,點在拋物線上,且.
(1)求拋物線的方程;
(2)過點作互相垂直的兩條直線,與拋物線分別相交于點,、分別為弦、的中點,求面積的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某快餐連鎖店招聘外賣騎手,該快餐連鎖店提供了兩種日工資方案:方案①:規(guī)定每日底薪50元,快遞業(yè)務每完成一單提成3元;方案②:規(guī)定每日底薪100元,快遞業(yè)務的前44單沒有提成,從第45單開始,每完成一單提成5元.該快餐連鎖店記錄了每天騎手的人均業(yè)務量.現(xiàn)隨機抽取100天的數(shù)據(jù),將樣本數(shù)據(jù)分為,,,,,,七組,整理得到如圖所示的頻率分布直方圖.
(1)隨機選取一天,估計這一天該連鎖店的騎手的人均日快遞業(yè)務量不少于65單的概率;
(2)若騎手甲、乙選擇了日工資方案①,丙、丁選擇了日工資方案②.現(xiàn)從上述4名騎手中隨機選取2人,求至少有1名騎手選擇方案①的概率;
(3)若從人均日收入的角度考慮,請你利用所學的統(tǒng)計學知識為新聘騎手做出日工資方案的選擇,并說明理由.(同組中的每個數(shù)據(jù)用該組區(qū)間的中點值代替)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,曲線過點,其參數(shù)方程為,(為參數(shù),),以坐標原點為極點,以軸的 非負半軸為極軸建立極坐標系,曲線的極坐標方程為.
(1)求曲線的普通方程和曲線的直角坐標方程;
(2)若曲線和曲線交于兩點,且,求實數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C:(a>b>0)的兩個焦點分別為F1(-,0)、F2(,0).點M(1,0)與橢圓短軸的兩個端點的連線相互垂直.
(1)求橢圓C的方程;
(2)已知點N的坐標為(3,2),點P的坐標為(m,n)(m≠3).過點M任作直線l與橢圓C相交于A、B兩點,設直線AN、NP、BN的斜率分別為k1、k2、k3,若k1+k3=2k2,試求m,n滿足的關系式.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在第二屆烏鎮(zhèn)互聯(lián)網(wǎng)大會中,為了提高安保的級別同時又為了方便接待,現(xiàn)將其中的五個參會國的人員安排酒店住宿,這五個參會國要在、、三家酒店選擇一家,且每家酒店至少有一個參會國入住,則這樣的安排方法共有_________(填具體數(shù)字)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com