【題目】已知橢圓的左、右焦點分別為,點也為拋物線的焦點.(1)若為橢圓上兩點,且線段的中點為,求直線的斜率;

(2)若過橢圓的右焦點作兩條互相垂直的直線分別交橢圓于,設線段的長分別為,證明是定值.

【答案】(1)(2)見解析

【解析】分析:(1)先利用拋物線的焦點是橢圓的焦點求出,進而確定橢圓的標準方程,再利用點差法求直線的斜率;(2)設出直線的方程,聯(lián)立直線和橢圓的方程,得到關于的一元二次方程,利用根與系數(shù)的關系進行求解.

詳解:因為拋物線的焦點為,所以,故.

所以橢圓.

(1)設,,則

兩式相減得,

的中點為,所以,.

所以.

顯然,點在橢圓內部,所以直線的斜率為.

(2)橢圓右焦點.

當直線的斜率不存在或者為時,.

當直線的斜率存在且不為時,設直線的方程為

,,聯(lián)立方程得

消去并化簡得,

因為,

所以.

所以,

同理可得.

所以為定值.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】若四面體的三組對棱分別相等,即,,,則________.(寫出所有正確結論的編號)

①四面體每個面的面積相等

②四面體每組對棱相互垂直

③連接四面體每組對棱中點的線段相互垂直平分

④從四面體每個頂點出發(fā)的三條棱的長都可以作為一個三角形的三邊長

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某商場銷售某種品牌的空調器,每周周初購進一定數(shù)量的空調器,商場每銷售一臺空調器可獲利500元,若供大于求,則每臺多余的空調器需交保管費100元;若供不應求,則可從其他商店調劑供應,此時每臺空調器僅獲利潤200元. (Ⅰ)若該商場周初購進20臺空調器,求當周的利潤(單位:元)關于當周需求量n(單位:臺,n∈N)的函數(shù)解析式f(n);
(Ⅱ)該商場記錄了去年夏天(共10周)空調器需求量n(單位:臺),整理得表:

周需求量n

18

19

20

21

22

頻數(shù)

1

2

3

3

1

以10周記錄的各需求量的頻率作為各需求量發(fā)生的概率,若商場周初購進20臺空調器,X表示當周的利潤(單位:元),求X的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某輪胎集團有限公司生產的輪胎的寬度 (單位: )服從正態(tài)分布,公司規(guī)定:輪胎寬度不在內將被退回生產部重新生產.

(1)求此輪胎不被退回的概率(結果精確到);

(2)現(xiàn)在該公司有一批輪胎需要進行初步質檢,檢驗方案是從這批輪胎中任取件作檢驗,這件產品中至少有件不被退回生產部,則稱這批輪胎初步質檢合格.

()求這批輪胎初步質檢合格的概率;

()若質檢部連續(xù)質檢了批輪胎,記為這批輪胎中初步質檢合格的批數(shù),求的數(shù)學期望.

附:若,則 .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知: =(﹣ sinωx,cosωx), =(cosωx,cosωx),ω>0,記函數(shù)f(x)= ,且f(x)的最小正周期為π.
(1)求ω的值;
(2)求f(x)的單調遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某大型商場為了了解顧客的購物信息,隨機在商場收集了位顧客的購物總額(單位元),將數(shù)據(jù)按照 分成組,制成了如下圖所示的頻率分布直方圖:

該商場每日大約有名顧客,為了增加商場銷售總額,近期對一次性購物不低于元的顧客發(fā)放紀念品.

(1)求頻率分布直方圖中的值,并估計每日應準備紀念品的數(shù)量;

(2)若每日按分層抽樣的方法從購物總額在三組對應的顧客中抽取名顧客,這名顧客中再隨機抽取兩名超級顧客,每人獎勵一個超級禮包,求獲得超級禮包的兩人來自不同組的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】兩條平行直線和圓的位置關系定義為:若兩條平行直線和圓有四個不同的公共點,則稱兩條平行線和圓相交;若兩平行直線和圓沒有公共點,則稱兩條平行線和圓相離;若兩平行直線和圓有一個、兩個或三個不同的公共點,則稱兩條平行線和圓相切.已知直線,,和圓:相切,則實數(shù)的取值范圍是( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓和直線l:

(1)證明:不論取何值時,直線和圓總有兩個不同的交點;

(2)求當取何值時,直線被圓截得的弦最短,并求最短的弦長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若變量x,y滿足約束條件 ,且z=ax+3y的最小值為7,則a的值為(
A.1
B.2
C.﹣2
D.不確定

查看答案和解析>>

同步練習冊答案