【題目】已知圓,直線的方程為,點是直線上一動點,過點作圓的切線、,切點為、.
(1)當(dāng)的橫坐標(biāo)為時,求的大;
(2)求四邊形面積的最小值;
(3)求證:經(jīng)過、、三點的圓必過定點,并求出所有定點的坐標(biāo).
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線的右頂點到其一條漸近線的距離等于,拋物線的焦點與雙曲線的右焦點重合,則拋物線上的動點到直線和距離之和的最小值為( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知的兩個頂點,的坐標(biāo)分別為,,圓是的內(nèi)切圓,在邊,,上的切點分別為,,,,動點的軌跡為曲線.
(1)求曲線的方程;
(2)設(shè)直線與曲線交于,兩點,點在曲線上,是坐標(biāo)原點,若,判斷四邊形的面積是否為定值?若為定值,求出該定值;如果不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)點,分別是橢圓的左、右焦點,為橢圓上任意一點,且的最小值為0.
(1)求橢圓的方程;
(2)如圖,動直線與橢圓有且僅有一個公共點,點,是直線上的兩點,且,,求四邊形面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè),是兩條不同的直線,,,是三個不同的平面,給出下列四個命題:
①若,,則
②若,,,則
③若,,則
④若,,則
其中正確命題的序號是( )
A.①和②B.②和③C.③和④D.①和④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列的各項均為正數(shù),前項和為,首項為2.若對任意的正整數(shù),恒成立.
(1)求,,;
(2)求證:是等比數(shù)列;
(3)設(shè)數(shù)列滿足,若數(shù)列,,…,(,)為等差數(shù)列,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形中,,為的中點,現(xiàn)將與折起,使得平面及平面都與平面垂直.
(1)求證:平面;
(2)求二面角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,四棱錐中,底面,面是直角梯形,為側(cè)棱上一點.該四棱錐的俯視圖和側(cè)(左)視圖如圖2所示.
(1)證明:平面;
(2)線段上是否存在點,使與所成角的余弦值為?若存在,找到所有符合要求的點,并求的長;若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com