(本小題滿分14分)
一個(gè)幾何體是由圓柱和三棱錐組合而成,點(diǎn)、、在圓的圓周上,其正(主)視圖、側(cè)(左)視圖的面積分別為10和12,如圖3所示,其中,,,.
(1)求證:;
(2)求二面角的平面角的大小.
(本小題主要考查空間線線、線面關(guān)系,二面角,三視圖等知識(shí),考查化歸與轉(zhuǎn)化數(shù)學(xué)思想方法,以及空間想象能力、推理論證能力、運(yùn)算求解能力.)
方法1:(1)證明:因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/78/d/wyou9.gif" style="vertical-align:middle;" />,,所以,即.
又因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/14/2/15xqa3.gif" style="vertical-align:middle;" />,,所以平面.
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/1a/e/r3wfc2.gif" style="vertical-align:middle;" />,所以.………………………………………………………………4分
(2)解:因?yàn)辄c(diǎn)、、在圓的圓周上,且,所以為圓的直徑.
設(shè)圓的半徑為,圓柱高為,根據(jù)正(主)視圖、側(cè)(左)視圖的面積可得,
…………………………………………6分
解得
所以,.………………………………………………………………………7分
過(guò)點(diǎn)作于點(diǎn),連接,
由(1)知,,,所以平面.
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/b4/2/6isug2.gif" style="vertical-align:middle;" />平面,所以.
所以為二面角的平面角.…………………………………………………………9分
由(1)知,平面,平面,
所以,即△為直角三角形.
在△中,,,則.
由,解得.
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/47/2/17euq3.gif" style="vertical-align:middle;" />.…………………………………………………………………………13分
所以.
所以二面角的平面角大小為.………………………………………………………14分
方法2:(1)證明:因?yàn)辄c(diǎn)、、在圓的圓周上,且,所以為圓的直徑.
設(shè)圓的半徑為,圓柱高為,根據(jù)正(主)視圖、側(cè)(左)視圖的面積可得,
解析
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,是邊長(zhǎng)為3的正方形,,,與平面所成的角為.
(1)求二面角的的余弦值;
(2)設(shè)點(diǎn)是線段上一動(dòng)點(diǎn),試確定的位置,使得,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,矩形中,,,平面,,,為的中點(diǎn).
(1)求證:平面.
(2)若,求平面與平面所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在三棱錐D-ABC中,已知△BCD是正三角形,AB⊥平面BCD,AB=BC=a,E為BC的中點(diǎn),F(xiàn)在棱AC上,且AF=3FC.
(1)求證AC⊥平面DEF;
(2)若M為BD的中點(diǎn),問(wèn)AC上是否存在一點(diǎn)N,使MN∥平面DEF?若存在,說(shuō)明點(diǎn)N的位置;若不存在,試說(shuō)明理由.
(3)求平面ABD與平面DEF所成銳二面角的余弦值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(12分)
如圖,邊長(zhǎng)為2的正方形ACDE所在的平面與平面ABC垂直,AD與CE的交點(diǎn)為M,,且AC=BC.
(1)求證:平面EBC;w.w.zxxk.c.o
(2求二面角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分14分)如圖,在四棱錐P-ABCD中,底面ABCD是邊長(zhǎng)為1的正方形,側(cè)棱PA的長(zhǎng)為2,且PA與AB、AD的夾角都等于600,是PC的中點(diǎn),設(shè).
(1)試用表示出向量;
(2)求的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題
[2013·四川高考]拋物線y2=8x的焦點(diǎn)到直線x-y=0的距離是( )
A.2 | B.2 | C. | D.1 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com