【題目】為響應國家號召,打贏脫貧致富攻堅戰(zhàn),武漢大學團隊帶領湖北省大悟縣新城鎮(zhèn)熊灣村村民建立有機、健康、高端、綠色的蔬菜基地,并策劃“生產(chǎn)、運輸、銷售”一體化的直銷供應模式,據(jù)統(tǒng)計,當?shù)卮迕駜赡陼r間成功脫貧.蔬菜種植基地將采摘的有機蔬菜以每份三斤稱重并保鮮分裝,以每份10元的價格銷售到生鮮超市,每份15元的價格賣給顧客,如果當天前8小時賣不完,則超市通過促銷以每份5元的價格賣給顧客(根據(jù)經(jīng)驗,當天能夠把剩余的有機蔬菜都低價處理完畢,且處理完畢后,當天不再進貨).該生鮮超市統(tǒng)計了100天有機蔬菜在每天的前8小時內(nèi)的銷售量(單位:份),制成如下表格(注:,且).若以100天記錄的頻率作為每日前8小時銷售量發(fā)生的概率,該生鮮超市當天銷售有機蔬菜利潤的期望值為決策依據(jù),若購進17份比購進18份的利潤的期望值大,則x的最小值是________.
前8小時內(nèi)銷售量 | 15 | 16 | 17 | 18 | 19 | 20 | 21 |
頻數(shù) | 10 | x | 16 | 16 | 15 | 13 | y |
科目:高中數(shù)學 來源: 題型:
【題目】已知定義在實數(shù)集上的偶函數(shù)和奇函數(shù)滿足.
(1)求與的解析式;
(2)若定義在實數(shù)集上的以2為最小正周期的周期函數(shù),當時,,試求在閉區(qū)間上的表達式,并證明在閉區(qū)間上單調(diào)遞減;
(3)設(其中為常數(shù)),若對于恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】以數(shù)列的任意相鄰兩項為坐標的點,均在一次函數(shù)y=2x+k的圖象上,數(shù)列滿足,且.
(1)求證數(shù)列為等比數(shù)列,并求出數(shù)列的公比;
(2)設數(shù)列,的前n項和分別為Sn,Tn,若S6=T4,S5=﹣9,求k的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】現(xiàn)對某市工薪階層關于“樓市限購令”的態(tài)度進行調(diào)查,隨機抽調(diào)了50人,他們月收入的頻數(shù)分布及對“樓市限購令”贊成人數(shù)如表:
月收入(單位百元) | [15,25) | [25,35) | [35,45) | [45,55) | [55,65) | [65,75) |
頻數(shù) | 5 | 10 | 15 | 10 | 5 | 5 |
贊成人數(shù) | 4 | 8 | 12 | 5 | 2 | 1 |
(Ⅰ)由以上統(tǒng)計數(shù)據(jù)填下面2×2列聯(lián)表并問是否有99%的把握認為“月收入以5500為分界點”對“樓市限購令”的態(tài)度有差異;
月收入低于55百元的人數(shù) | 月收入不低于55百元的人數(shù) | 合計 | |
贊成 | |||
不贊成 | |||
合計 |
(Ⅱ)若采用分層抽樣在月收入在[15,25),[25,35)的被調(diào)查人中共隨機抽取6人進行追蹤調(diào)查,并給予其中3人“紅包”獎勵,求收到“紅包”獎勵的3人中至少有1人收入在[15,25)的概率.
參考公式:K2,其中n=a+b+c+d.
參考數(shù)據(jù):
P(K2≥k) | 0.050 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】先閱讀參考材料,再解決此問題:
參考材料:求拋物線弧()與x軸及直線所圍成的封閉圖形的面積
解:把區(qū)間進行n等分,得個分點(),過分點,作x軸的垂線,交拋物線于,并如圖構造個矩形,先求出個矩形的面積和,再求,即是封閉圖形的面積,又每個矩形的寬為,第i個矩形的高為,所以第i個矩形的面積為;
所以封閉圖形的面積為
閱讀以上材料,并解決此問題:已知對任意大于4的正整數(shù)n,
不等式恒成立,
則實數(shù)a的取值范圍為______
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點.若曲線上存在,兩點,使為正三角形,則稱為型曲線.給定下列三條曲線:
①;
②;
③.
其中型曲線的個數(shù)是
A.B.
C.D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在三棱錐P-ABC中,平面PAC⊥平面ABC,和都是正三角形, , E、F分別是AC、BC的中點,且PD⊥AB于D.
(Ⅰ)證明:直線⊥平面;
(Ⅱ)求二面角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}的通項公式為 an=(n﹣k1)(n﹣k2),其中k1,k2∈Z:
(1)試寫出一組k1,k2∈Z的值,使得數(shù)列{an}中的各項均為正數(shù);
(2)若k1=1、k2∈N*,數(shù)列{bn}滿足bn=,且對任意m∈N*(m≠3),均有b3<bm,寫出所有滿足條件的k2的值;
(3)若0<k1<k2,數(shù)列{cn}滿足cn=an+|an|,其前n項和為Sn,且使ci=cj≠0(i,j∈N*,i<j)的i和j有且僅有4組,S1、S2、…、Sn中至少3個連續(xù)項的值相等,其他項的值均不相等,求k1,k2的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com