已知拋物線C:的焦點(diǎn)為F,直線與y軸的交點(diǎn)為P,與C的交點(diǎn)為Q,且.
(1)求C的方程;
(2)過(guò)F的直線與C相交于A,B兩點(diǎn),若AB的垂直平分線與C相較于M,N兩點(diǎn),且A,M,B,N四點(diǎn)在同一圓上,求的方程.
(1);(2)直線的方程為

試題分析:(1)由已知條件,先求點(diǎn)的坐標(biāo),再由及拋物線的焦半徑公式列方程可求得的值,從而可得拋物線C的方程;(2)由已知條件可知直線與坐標(biāo)軸不垂直,故可設(shè)直線的點(diǎn)參式方程:,代入消元得.設(shè)由韋達(dá)定理及弦長(zhǎng)公式表示的中點(diǎn)的坐標(biāo)及長(zhǎng),同理可得的中點(diǎn)的坐標(biāo)及的長(zhǎng).由于垂直平分線,故四點(diǎn)在同一圓上等價(jià)于,由此列方程可求得的值,進(jìn)而可得直線的方程.
試題解析:(1)設(shè),代入,得.由題設(shè)得,解得(舍去)或,∴C的方程為;(2)由題設(shè)知與坐標(biāo)軸不垂直,故可設(shè)的方程為,代入.設(shè)
.故的中點(diǎn)為.又的斜率為的方程為.將上式代入,并整理得.設(shè).故的中點(diǎn)為
由于垂直平分線,故四點(diǎn)在同一圓上等價(jià)于,從而,化簡(jiǎn)得,解得.所求直線的方程為
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓經(jīng)過(guò)點(diǎn),且兩焦點(diǎn)與短軸的兩個(gè)端點(diǎn)的連線構(gòu)成一正方形.(12分)
(1)求橢圓的方程;
(2)直線與橢圓交于兩點(diǎn),若線段的垂直平分線經(jīng)過(guò)點(diǎn),求
為原點(diǎn))面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,曲線由上半橢圓和部分拋物線連接而成,的公共點(diǎn)為,其中的離心率為.

(1)求的值;
(2)過(guò)點(diǎn)的直線分別交于(均異于點(diǎn)),若,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

定長(zhǎng)為6的線段AB的端點(diǎn)A、B在拋物線y2=-4x上移動(dòng),則AB的中點(diǎn)到y(tǒng)軸的距離的最小值為( 。
A.6B.5C.3D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)、是關(guān)于的方程的兩個(gè)不等實(shí)根,則過(guò),兩點(diǎn)的直線與雙曲線的公共點(diǎn)的個(gè)數(shù)為(   )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知橢圓的右焦點(diǎn)為,點(diǎn)是橢圓上任意一點(diǎn),圓是以為直徑的圓.
(1)若圓過(guò)原點(diǎn),求圓的方程; 
(2)寫出一個(gè)定圓的方程,使得無(wú)論點(diǎn)在橢圓的什么位置,該定圓總與圓相切,請(qǐng)寫出你的探究過(guò)程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知橢圓的左右焦點(diǎn)為,直線過(guò)點(diǎn)且垂直于橢圓的長(zhǎng)軸,動(dòng)直線垂直于直線于點(diǎn)P,線段的垂直平分線與的交點(diǎn)的軌跡為曲線,若上不同的點(diǎn),且,則的取值范圍是(  )
A.B.
C.D.以上都不正確

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,一個(gè)底面半徑為的圓柱被與其底面所成角為的平面所截,截面是一個(gè)橢圓,當(dāng)時(shí),這個(gè)橢圓的離心率為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知橢圓E的左右焦點(diǎn)分別F1,F(xiàn)2,過(guò)F1且斜率為2的直線交橢圓E于P、Q兩點(diǎn),若△PF1F2為直角三角形,則橢圓E的離心率為     .

查看答案和解析>>

同步練習(xí)冊(cè)答案