【題目】已知函數(shù),其中e為自然對(duì)數(shù)的底數(shù).
(1)若函數(shù)的圖象在點(diǎn)處的切線方程為,求實(shí)數(shù)a的值;
(2)若函數(shù)有2個(gè)不同的零點(diǎn),.
①求實(shí)數(shù)a的取值范圍;
②求證:.
【答案】(1)0;(2)①;②詳見解析.
【解析】
(1)根據(jù)切線方程可知,即可求解;
(2)①求函數(shù)導(dǎo)數(shù),分類討論,顯然時(shí),恒成立,不符合題意,時(shí),由導(dǎo)數(shù)可求函數(shù)最小值,函數(shù)有零點(diǎn)則最小值需小于0,得,易知在上有1個(gè)零點(diǎn),利用導(dǎo)數(shù)證明函數(shù)在上有1個(gè)零點(diǎn)即可求的取值范圍;
②利用導(dǎo)數(shù)構(gòu)造函數(shù)先證明當(dāng),,時(shí),,結(jié)合①可得,取對(duì)數(shù)即可得出結(jié)論.
(1)因?yàn)?/span>,
所以切線的斜率為,解得,
所以實(shí)數(shù)的值為0.
(2)①由題意知函數(shù)的定義域?yàn)?/span>且.
當(dāng)時(shí),恒成立,
所以在上為增函數(shù),
故至多有1個(gè)零點(diǎn),不合題意.
當(dāng)時(shí),令,則.
若,則,
所以在上為增函數(shù);
若,則,
所以在上為減函數(shù).
故的最小值為.
依題意知,解得.
一方面,,所以在上有1個(gè)零點(diǎn).
另一方面,先證明.
令,則
當(dāng)時(shí),,故在上為增函數(shù);
當(dāng)時(shí),.故在上為減函數(shù).
所以的最大值為,故.
因?yàn)?/span>,所以.
而.
令,,則
當(dāng)時(shí),.故在上為增函數(shù),
所以
故
因此在上有1個(gè)零點(diǎn),
綜上,實(shí)數(shù)的取值范圍是.
②先證明當(dāng),,時(shí),
.(*)
不妨設(shè),
(*)式等價(jià),
等價(jià)于
在中,令,即證.
令
則,
所以在上為增函數(shù),故,
所以成立,
所以成立.
在中,令,即證.
令,則,
所以在上為減函數(shù),故,
所以成立,
所以成立.
綜上,(*)式成立.
由①得有2個(gè)零點(diǎn),,
則,所以,
兩邊取“”得,
所以.
利用得:,
所以且.
又因?yàn)?/span>
所以,
故.
因此.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列滿足條件:,且是公比為的等比數(shù)列,設(shè).
(1)求出使不等式成立的的取值范圍;
(2)求和,其中;
(3)設(shè),求數(shù)列的最大項(xiàng)和最小項(xiàng)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)圓C滿足:①截y軸所得弦長(zhǎng)為2;②被x軸分成兩段圓弧,其弧長(zhǎng)的比為3:1,在滿足條件①、②的所有圓中,求圓心到直線l:x-2y=0的距離最小的圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),函數(shù).
(Ⅰ)判斷函數(shù)的單調(diào)性;
(Ⅱ)若時(shí),對(duì)任意,不等式恒成立,求實(shí)數(shù)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某商場(chǎng)在促銷期間規(guī)定:商場(chǎng)內(nèi)所有商品按標(biāo)價(jià)的出售,當(dāng)顧客在商場(chǎng)內(nèi)消費(fèi)一定金額后,按如下方案獲得相應(yīng)金額的獎(jiǎng)券:
消費(fèi)金額(元)的范圍 | … | ||||
獲得獎(jiǎng)券的金額(元) | 30 | 60 | 100 | 130 | … |
根據(jù)上述促銷方法,顧客在該商場(chǎng)購(gòu)物可以獲得雙重優(yōu)惠,例如:購(gòu)買標(biāo)價(jià)為400元的商品,則消費(fèi)金額為320元,獲得的優(yōu)惠額為:元,設(shè)購(gòu)買商品得到的優(yōu)惠率=(購(gòu)買商品獲得的優(yōu)惠額)/(商品標(biāo)價(jià)),試問:
(1)若購(gòu)買一件標(biāo)價(jià)為1000元的商品,顧客得到的優(yōu)惠率是多少?
(2)對(duì)于標(biāo)價(jià)在(元)內(nèi)的商品,顧客購(gòu)買標(biāo)價(jià)為多少元的商品,可得到不小于的優(yōu)惠率?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)實(shí)數(shù),整數(shù), .
(1)證明:當(dāng)且時(shí), ;
(2)數(shù)列滿足, ,證明: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,一個(gè)直徑為1的小圓沿著直徑為2的大圓內(nèi)壁的逆時(shí)針方向滾動(dòng),M和N是小圓的一條固定直徑的兩個(gè)端點(diǎn),那么,當(dāng)小圓這樣滾過大圓內(nèi)壁的一周,點(diǎn)M,N在大圓內(nèi)所繪出的圖形大致是( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)a>0,0≤x<2π,若函數(shù)y=cos2x-asinx+b的最大值為0,最小值為-4,試求a與b的值,并求使y取得最大值和最小值時(shí)的x值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某醫(yī)院體檢中心為回饋大眾,推出優(yōu)惠活動(dòng):對(duì)首次參加體檢的人員,按200元/次收費(fèi),并注冊(cè)成為會(huì)員,對(duì)會(huì)員的后續(xù)體檢給予相應(yīng)優(yōu)惠,標(biāo)準(zhǔn)如下:
該休檢中心從所有會(huì)員中隨機(jī)選取了100位對(duì)他們?cè)诒局行膮⒓芋w檢的次數(shù)進(jìn)行統(tǒng)計(jì),得到數(shù)據(jù)如表:
假設(shè)該體檢中心為顧客體檢一次的成本費(fèi)用為150元,根據(jù)所給數(shù)據(jù),解答下列問題:
(1)已知某顧客在此體檢中心參加了3次體檢,求這3次體檢,該體檢中心的平均利潤(rùn);
(2)該體檢中心要從這100人里至少體檢3次的會(huì)員中,按體檢次數(shù)用分層抽樣的方法抽出5人,再?gòu)倪@5人中抽取2人,每人發(fā)放現(xiàn)金200元.用5表示體檢3次的會(huì)員所得現(xiàn)金和,求的分布列及.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com