在對某漁業(yè)產(chǎn)品的質(zhì)量調(diào)研中,從甲,乙兩地出產(chǎn)的該產(chǎn)品中各隨機(jī)抽取10件,測量該產(chǎn)品中某種元素的含量(單位:毫克).
下表是測量數(shù)據(jù)的莖葉圖:
規(guī)定:當(dāng)產(chǎn)品中的此種元素含量毫克時為優(yōu)質(zhì)品.

(1)試用上述樣本數(shù)據(jù)估計甲,乙兩地該產(chǎn)品的優(yōu)質(zhì)品率(優(yōu)質(zhì)品件數(shù)/總件數(shù));
(2)從乙地抽出的上述10件產(chǎn)品中,隨機(jī)抽取3件,求抽到的3件產(chǎn)品中優(yōu)質(zhì)品數(shù)的分布列及數(shù)學(xué)期望

(1)甲廠優(yōu)等品率為, 乙廠優(yōu)等品率為
(2)的分布列為 


1
2
3




故的數(shù)學(xué)期望為 

解析試題分析:(1)根據(jù)甲廠抽取的樣品中優(yōu)等品有7件,乙廠抽取的樣品中優(yōu)等品有8件,各抽取件,分別計算優(yōu)等品率.
(2)根據(jù)的取值為.計算概率
,,
應(yīng)用數(shù)學(xué)期望計算公式即得.
(1)甲廠抽取的樣品中優(yōu)等品有7件,優(yōu)等品率為,              2分
乙廠抽取的樣品中優(yōu)等品有8件,優(yōu)等品率為.                   4分
(2)的取值為1,2,3.                              6分
,,        9分
所以的分布列為 


1
2
3




                                           10分
故的數(shù)學(xué)期望為                    12分
考點:古典概型,獨立事件概率的計算,隨機(jī)變量的分布列及數(shù)學(xué)期望.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20名學(xué)生某次數(shù)學(xué)考試成績(單位:分)的頻數(shù)分布直方圖如下:

(1)求頻率分布直方圖中的值;
(2)分別球出成績落在中的學(xué)生人數(shù);
(3)從成績在的學(xué)生中人選2人,求此2人的成績都在中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在數(shù)學(xué)趣味知識培訓(xùn)活動中,甲、乙兩名學(xué)生的5次培訓(xùn)成績?nèi)缦虑o葉圖所示:

(1)從甲、乙兩人中選擇1人參加數(shù)學(xué)趣味知識競賽,你會選哪位?請運用統(tǒng)計學(xué)的知識說明理由;
(2) 從乙的5次培訓(xùn)成績中隨機(jī)選擇2個,試求選到121分的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某研究機(jī)構(gòu)對高三學(xué)生的記憶力x和判斷力y進(jìn)行統(tǒng)計分析,得下表數(shù)據(jù)

x
6
8
10
12
y
2
3
5
6
(1)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程 
(2)試根據(jù)已求出的線性回歸方程,預(yù)測記憶力為9的同學(xué)的判斷力.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某市規(guī)定,高中學(xué)生三年在校期間參加不少于小時的社區(qū)服務(wù)才合格.教育部門在全市隨機(jī)抽取200位學(xué)生參加社區(qū)服務(wù)的數(shù)據(jù),按時間段,,
,(單位:小時)進(jìn)行統(tǒng)計,其頻率分布直方圖如圖所示.
(Ⅰ)求抽取的200位學(xué)生中,參加社區(qū)服務(wù)時間不少于90小時的學(xué)生人數(shù),并估計
從全市高中學(xué)生中任意選取一人,其參加社區(qū)服務(wù)時間不少于90小時的概率;
(Ⅱ)從全市高中學(xué)生(人數(shù)很多)中任意選取3位學(xué)生,記為3位學(xué)生中參加社區(qū)服務(wù)時間不少于90小時的人數(shù).試求隨機(jī)變量的分布列和數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某公司生產(chǎn)產(chǎn)品A,產(chǎn)品質(zhì)量按測試指標(biāo)分為:指標(biāo)大于或等于90為一等品,大于或等于小于為二等品,小于為三等品,生產(chǎn)一件一等品可盈利50元,生產(chǎn)一件二等品可盈利元,生產(chǎn)一件三等品虧損10元.現(xiàn)隨機(jī)抽查熟練工人甲和新工人乙生產(chǎn)的這種產(chǎn)品各100件進(jìn)行檢測,檢測結(jié)果統(tǒng)計如下:

測試指標(biāo)







3
7
20
40
20
10

5
15
35
35
7
3
 
根據(jù)上表統(tǒng)計得到甲、乙兩人生產(chǎn)產(chǎn)品A為一等品、二等品、三等品的頻率分別估計為他們生產(chǎn)產(chǎn)品A為一等品、二等品、三等品的概率.
(1)計算甲生產(chǎn)一件產(chǎn)品A,給工廠帶來盈利不小于30元的概率;
(2)若甲一天能生產(chǎn)20件產(chǎn)品A,乙一天能生產(chǎn)15件產(chǎn)品A,估計甲乙兩人一天生產(chǎn)的35件產(chǎn)品A中三等品的件數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

一個盒子中裝有大量形狀大小一樣但重量不盡相同的小球,從中隨機(jī)抽取個作為樣本,稱出它們的重量(單位:克),重量分組區(qū)間為,,,,由此得到樣本的重量頻率分布直方圖,如圖

(1)求的值;
(2)根據(jù)樣本數(shù)據(jù),試估計盒子中小球重量的平均值;
(注:設(shè)樣本數(shù)據(jù)第組的頻率為,第組區(qū)間的中點值為,則樣本數(shù)據(jù)的平均值為.)
(3)從盒子中隨機(jī)抽取個小球,其中重量在內(nèi)的小球個數(shù)為,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某商場經(jīng)營一批進(jìn)價是30元/臺的小商品,在市場試驗中發(fā)現(xiàn),此商品的銷售單價x(x取整數(shù))元與日銷售量y臺之間有如下關(guān)系:

x
35
40
45
50
y
56
41
28
11
(1)畫出散點圖,并判斷y與x是否具有線性相關(guān)關(guān)系?
(2)求日銷售量y對銷售單價x的線性回歸方程;
(3)設(shè)經(jīng)營此商品的日銷售利潤為P元,根據(jù)(1)寫出P關(guān)于x的函數(shù)關(guān)系式,并預(yù)測當(dāng)銷售單價x為多少元時,才能獲得最大日銷售利潤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

對某電子元件進(jìn)行壽命追蹤調(diào)查,所得樣本數(shù)據(jù)的頻率分布直方圖如下.

(1)求,并根據(jù)圖中的數(shù)據(jù),用分層抽樣的方法抽取個元件,元件壽命落在之間的應(yīng)抽取幾個?
(2)從(1)中抽出的壽命落在之間的元件中任取個元件,求事件“恰好有一個元件壽命落在之間,一個元件壽命落在之間”的概率.

查看答案和解析>>

同步練習(xí)冊答案