【題目】如圖所示,在長方體中, , , 為棱上一點,

1,求異面直線所成角的正切值;

2,求證平面.

【答案】12)見解析

【解析】試題分析:(1)線線角找平行,因為,所以(或其補角)是異面直線所成角,解三角形可得(2)先根據(jù)勾股數(shù)得再結(jié)合可得,最后根據(jù)線面垂直判定定理可得平面.

試題解析:解:(1),所以(或其補角)是異面直線所成角

長方體,

, , ,得

(2)由題意, , ,

, ,即

又由可得

平面.

點睛:垂直、平行關(guān)系證明中應(yīng)用轉(zhuǎn)化與化歸思想的常見類型.

(1)證明線面、面面平行,需轉(zhuǎn)化為證明線線平行.

(2)證明線面垂直,需轉(zhuǎn)化為證明線線垂直.

(3)證明線線垂直,需轉(zhuǎn)化為證明線面垂直.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)的圖象關(guān)于直線對稱.

(1)不等式對任意恒成立,求實數(shù)的最大值;

(2)設(shè)內(nèi)的實根為, ,若在區(qū)間上存在,證明: .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)是定義在D上的函數(shù),若存在區(qū)間[m,n]D及正實數(shù)k,使函數(shù)f(x)在[m,n]上的值域恰為[km,kn],則稱函數(shù)f(x)是k型函數(shù).給出下列說法:
①f(x)=3﹣ 不可能是k型函數(shù);
②若函數(shù)f(x)= (a≠0)是1型函數(shù),則n﹣m的最大值為 ;
③若函數(shù)f(x)=﹣ x2+x是3型函數(shù),則m=﹣4,n=0.
其中正確說法個數(shù)為(
A.0
B.1
C.2
D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知f(x)=
(1)若f(x)>k的解集為{x|x<﹣3或x>﹣2},求k的值;
(2)若對任意x>0,f(x)≤t恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某市對貧困家庭自主創(chuàng)業(yè)給予小額貸款補貼,每戶貸款額為萬元,貸款期限有個月、個月、個月、個月、個月五種,這五種貸款期限政府分別需要補助元、元、元、元、元,從年享受此項政策的困難戶中抽取了戶進行了調(diào)查統(tǒng)計,選取貸款期限的頻數(shù)如下表:

貸款期限

個月

個月

個月

個月

個月

頻數(shù)

以商標各種貸款期限的頻率作為年貧困家庭選擇各種貸款期限的概率.

(1)某小區(qū)年共有戶準備享受此項政策,計算其中恰有兩戶選擇貸款期限為個月的概率;

(2)設(shè)給享受此項政策的某困難戶補貼為元,寫出的分布列,若預計年全市有萬戶享受此項政策,估計年該市共要補貼多少萬元.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在直角坐標系中,以原點為極點, 軸的正半軸為極軸,建立極坐標系.已知點的極坐標為,曲線的參數(shù)方程為 (為參數(shù))

(1)求點的直角坐標;化曲線的參數(shù)方程為普通方程;

(2)設(shè)為曲線上一動點,以為對角線的矩形的一邊垂直于極軸,求矩形周長的最小值,及此時點的直角坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】潮州統(tǒng)計局就某地居民的月收入調(diào)查了人,并根據(jù)所得數(shù)據(jù)畫了樣本的頻率分

布直方圖(每個分組包括左端點,不包括右端點,如第一組表示收入在)。

(1)求居民月收入在的頻率;

(2)根據(jù)頻率分布直方圖算出樣本數(shù)據(jù)的中位數(shù);

(3)為了分析居民的收入與年齡、職業(yè)等方面的關(guān)系,必須按月收入再從這人中分層抽樣方法抽出人作進一步分析,則月收入在的這段應(yīng)抽多少人?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,矩形與梯形所在的平面互相垂直, , , , , 的中點, 中點.

1)求證:平面∥平面;

2)求證:平面平面

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,a、b、c分別是∠A、∠B、∠C的對邊長,已知a、b、c成等比數(shù)列,且a2﹣c2=ac﹣bc,
(1)求∠A的大;
(2)求 的值.

查看答案和解析>>

同步練習冊答案