如圖,在三棱柱中,平面,,, ,分別是,的中點.
(Ⅰ)求證:∥平面;
(Ⅱ)求證:平面平面;
(Ⅲ)求直線與平面所成角的正弦值.
(Ⅰ)詳見解析;(Ⅱ)詳見解析;(Ⅲ)
解析試題分析:(Ⅰ)根據(jù)題意可根據(jù)中點證平行四邊形得線線平行,再根據(jù)線面平行的性質(zhì)定理得線面平行。(Ⅱ)由已知條件易得平面.由(Ⅰ)知∥,即平面。根據(jù)面面垂直的判定定理可得平面平面。(Ⅲ)法一普通方法:可用等體積法求點到面的距離,再用線面角的定義找到線面角后求其正弦值。此法涉及到大量的計算,過程較繁瑣;法二空間向量法:建立空間直角坐標系后先求面的法向量。與法向量所成角余弦值的絕對值即為直線與平面所成角的正弦值。
試題解析:證明:(Ⅰ)
取的中點,連結,交于點,可知為中點,
連結,易知四邊形為平行四邊形,
所以∥.
又平面,平面,
所以∥平面. 4分
證明:(Ⅱ)因為,且是的中點,
所以.
因為平面,所以.
所以平面.
又∥,所以平面.
又平面,
所以平面平面. 9分
解:(Ⅲ)如圖建立空間直角坐標系,
則,, ,.
,,.
設平面的法向量為.
則
所以
令.則.
設向量與的夾角為,則.
所以直線與平面所成角的正弦值為. 14分
考點:1線線平行、線面平行;2線線垂直、線面垂直;3線面角。
科目:高中數(shù)學 來源: 題型:解答題
如圖,在四棱錐中,是正方形,平面,,分別是的中點.
(1)在線段上確定一點,使平面,并給出證明;
(2)證明平面平面,并求出到平面的距離.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,在四棱錐P-ABCD中,四邊形ABCD是矩形,平面PCD⊥平面ABCD,M為PC中點.求證:
(1)PA∥平面MDB;
(2)PD⊥BC.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,已知是圓的直徑,垂直圓所在的平面,是圓上任一點,是線段的中點,是線段上的一點.
求證:(Ⅰ)若為線段中點,則∥平面;
(Ⅱ)無論在何處,都有.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,已知、、為不在同一直線上的三點,且,.
(1)求證:平面//平面;
(2)若平面,且,,,求證:平面;
(3)在(2)的條件下,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
直四棱柱中,底面為菱形,且為延長線上的一點,面.設.
(Ⅰ)求二面角的大;
(Ⅱ)在上是否存在一點,使面?若存在,求的值;不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com