如圖,橢圓的中心為原點(diǎn),長軸在軸上,離心率,又橢圓上的任一點(diǎn)到橢圓的兩焦點(diǎn)的距離之和為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若平行于軸的直線與橢圓相交于不同的兩點(diǎn)、,過、兩點(diǎn)作圓心為的圓,使橢圓上的其余點(diǎn)均在圓外.求的面積的最大值.
(1);(2).
【解析】
試題分析:(1)根據(jù)題干條件求出、的值,進(jìn)而求出的值,從而確定橢圓的標(biāo)準(zhǔn)方程;(2)設(shè)點(diǎn)的坐標(biāo)為,并設(shè)橢圓上任意一點(diǎn)的坐標(biāo)為,求出,根據(jù)題中條件得到點(diǎn)的坐標(biāo)使得取得最小值,從而得出,最后再求出面積的表達(dá)式,結(jié)合二次函數(shù)或基本不等式求出的最大值.
試題解析:(1)設(shè)所求橢圓的標(biāo)準(zhǔn)方程為,
由題意得,解的,,,
所求橢圓的標(biāo)準(zhǔn)方程為;
(2)由橢圓的對稱性,可設(shè),又設(shè)是橢圓上任意一點(diǎn),則
,,
所以當(dāng)時(shí),取最小值,
又由題意得:是橢圓上任意一點(diǎn)到的距離最小的點(diǎn),
設(shè),因此當(dāng)時(shí),取最小值,
又因,所以,
由對稱性知,故,所以
S,
所以當(dāng)時(shí),的面積取得最大值.
考點(diǎn):1.橢圓的方程;2.圓與橢圓的位置關(guān)系;3.二次函數(shù)
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年廣東省肇慶市高三3月第一次模擬理科數(shù)學(xué)試卷(解析版) 題型:選擇題
若如圖所示的程序框圖輸出的S是30,則在判斷框中M表示的“條件”應(yīng)該是( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年廣東省湛江市高三高考模擬測試二理科數(shù)學(xué)試卷(解析版) 題型:選擇題
已知實(shí)數(shù)、滿足不等式組,且恒成立,則的取值范圍是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年廣東省湛江市高三高考模擬測試二文科數(shù)學(xué)試卷(解析版) 題型:填空題
若為偶函數(shù),則實(shí)數(shù)_______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年廣東省湛江市高三高考模擬測試二文科數(shù)學(xué)試卷(解析版) 題型:選擇題
一個(gè)幾何體的正視圖、側(cè)視圖、和俯視圖形狀都相同,大小均相等,則這個(gè)幾何體不可以是( )
A.球 B.三棱錐
C.正方體 D.圓柱
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年廣東省汕頭市高三3月高考模擬考試文科試卷(解析版) 題型:填空題
如圖,直線與圓相切于,割線經(jīng)過圓心,弦于點(diǎn),,,則___.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年廣東省汕頭市高三3月高考模擬考試文科試卷(解析版) 題型:選擇題
已知雙曲線的離心率為,且它有一個(gè)焦點(diǎn)與拋物線的焦點(diǎn)相同,那么雙曲線的漸近線方程為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年廣東省梅州市高三3月總復(fù)習(xí)質(zhì)檢理科數(shù)學(xué)試卷(解析版) 題型:填空題
已知集合,B={x/ax2+bx+c0},若則的最小值_______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年廣東省揭陽市高三4月第二次模擬考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:填空題
已知函數(shù)為偶函數(shù),且,若函數(shù),則
.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com