已知兩點(diǎn)M(-2,0)、N(2,0),點(diǎn)P為坐標(biāo)平面內(nèi)的動(dòng)點(diǎn),滿足|
MN
|•|
MP
|+
MN
NP
=0,則動(dòng)點(diǎn)P(x,y)的軌跡方程為( 。
A、y2=8x
B、y2=-8x
C、y2=4x
D、y2=-4x
分析:先根據(jù)MN的坐標(biāo)求出|MN|然后設(shè)點(diǎn)P的坐標(biāo)表示出關(guān)系|
MN
|•|
MP
|+
MN
NP
=0即可得到答案.
解答:解:設(shè)P(x,y),x>0,y>0,M(-2,0),N(2,0),|
MN
|=4

MP
=(x+2,y),
NP
=(x-2,y)

|
MN
|•|
MP
|+
MN
NP
=0
,
4
(x+2)2+y2
+4(x-2)=0
,
化簡(jiǎn)整理得y2=-8x.
故選B
點(diǎn)評(píng):本題主要考查平面向量的數(shù)量積運(yùn)算,拋物線的定義.向量的坐標(biāo)表示和數(shù)量積的性質(zhì)在平面向量中的應(yīng)用是學(xué)習(xí)的重點(diǎn)和難點(diǎn).也是高考常?疾榈闹匾獌(nèi)容之一.在平時(shí)請(qǐng)多多注意用坐標(biāo)如何來表示向量平行和向量垂直,既要注意它們聯(lián)系,也要注意它們的區(qū)別.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知兩點(diǎn)M(-2,0)、N(2,0),點(diǎn)P為坐標(biāo)平面內(nèi)的動(dòng)點(diǎn),滿足|
MN
|•|
MP
|+
MN
MP
=0,則動(dòng)點(diǎn)P(x,y)的軌跡方程為
y2=-8x
y2=-8x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知兩點(diǎn)M(2,0)、N(-2,0),平面上動(dòng)點(diǎn)P滿足由|
MN
|•|
MP
|+
MN
MP
= 0

(1)求動(dòng)點(diǎn)P的軌跡C的方程.
(2)是否存在實(shí)數(shù)m使直線x+my-4=0(m∈R)與曲線C交于A、B兩點(diǎn),且OA⊥OB?若存在,求出m的取值范圍;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知兩點(diǎn)M(-2,0),N(2,0),點(diǎn)P滿足
PM
PN
=12
,則點(diǎn)P的軌跡方程為
x2+y2=16
x2+y2=16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2006•重慶一模)已知兩點(diǎn)M(-2,0),N(2,0),動(dòng)點(diǎn)P(x,y)在y軸上的射影為H,|
PH
|
是2和
PM
PN
的等比中項(xiàng).
(I)求動(dòng)點(diǎn)P的軌跡方程;
(II)若以點(diǎn)M、N為焦點(diǎn)的雙曲線C過直線x+y=1上的點(diǎn)Q,求實(shí)軸最長(zhǎng)的雙曲線C的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案