在平面直角坐標(biāo)系xOy中,拋物線C的頂點(diǎn)在原點(diǎn),經(jīng)過(guò)點(diǎn)A(2,2),其焦點(diǎn)F在x軸上.
(1)求拋物線C的標(biāo)準(zhǔn)方程;
(2)求過(guò)點(diǎn)F,且與直線OA垂直的直線的方程;
(3)設(shè)過(guò)點(diǎn)M(m,0)(m>0)的直線交拋物線C于D、E兩點(diǎn),ME=2DM,記D和E兩點(diǎn)間的距離為f(m),求f(m)關(guān)于m的表達(dá)式.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知離心率為的橢圓的頂點(diǎn)恰好是雙曲線的左右焦點(diǎn),點(diǎn)是橢圓上不同于的任意一點(diǎn),設(shè)直線的斜率分別為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)當(dāng),在焦點(diǎn)在軸上的橢圓上求一點(diǎn)Q,使該點(diǎn)到直線(的距離最大。
(3)試判斷乘積“(”的值是否與點(diǎn)(的位置有關(guān),并證明你的結(jié)論;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在平面直角坐標(biāo)系xOy中,已知定點(diǎn)A(-4,0)、B(4,0),動(dòng)點(diǎn)P與A、B連線的斜率之積為-.
(1)求點(diǎn)P的軌跡方程;
(2)設(shè)點(diǎn)P的軌跡與y軸負(fù)半軸交于點(diǎn)C.半徑為r的圓M的圓心M在線段AC的垂直平分線上,且在y軸右側(cè),圓M被y軸截得的弦長(zhǎng)為r.
(ⅰ)求圓M的方程;
(ⅱ)當(dāng)r變化時(shí),是否存在定直線l與動(dòng)圓M均相切?如果存在,求出定直線l的方程;如果不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知雙曲線=1的離心率為2,焦點(diǎn)到漸近線的距離等于,過(guò)右焦點(diǎn)F2的直線l交雙曲線于A、B兩點(diǎn),F(xiàn)1為左焦點(diǎn).
(1)求雙曲線的方程;
(2)若△F1AB的面積等于6,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓=1(a>b>0)的離心率為,且過(guò)點(diǎn)P,A為上頂點(diǎn),F(xiàn)為右焦點(diǎn).點(diǎn)Q(0,t)是線段OA(除端點(diǎn)外)上的一個(gè)動(dòng)點(diǎn),
過(guò)Q作平行于x軸的直線交直線AP于點(diǎn)M,以QM為直徑的圓的圓心為N.
(1)求橢圓方程;
(2)若圓N與x軸相切,求圓N的方程;
(3)設(shè)點(diǎn)R為圓N上的動(dòng)點(diǎn),點(diǎn)R到直線PF的最大距離為d,求d的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知定點(diǎn)F(0,1)和直線l1:y=-1,過(guò)定點(diǎn)F與直線l1相切的動(dòng)圓圓心為點(diǎn)C.
(1)求動(dòng)點(diǎn)C的軌跡方程;
(2)過(guò)點(diǎn)F的直線l2交軌跡于兩點(diǎn)P、Q,交直線l1于點(diǎn)R,求·的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓C的兩個(gè)焦點(diǎn)是)和,并且經(jīng)過(guò)點(diǎn),拋物線的頂點(diǎn)E在坐標(biāo)原點(diǎn),焦點(diǎn)恰好是橢圓C的右頂點(diǎn)F.
(1)求橢圓C和拋物線E的標(biāo)準(zhǔn)方程;
(2)過(guò)點(diǎn)F作兩條斜率都存在且互相垂直的直線l1、l2,l1交拋物線E于點(diǎn)A、B,l2交拋物線E于點(diǎn)G、H,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知曲線C:(5-m)x2+(m-2)y2=8(m∈R).
(1)若曲線C是焦點(diǎn)在x軸上的橢圓,求m的取值范圍;
(2)設(shè)m=4,曲線C與y軸的交點(diǎn)為A,B(點(diǎn)A位于點(diǎn)B的上方),直線y=kx+4與曲線C交于不同的兩點(diǎn)M,N,直線y=1與直線BM交于點(diǎn)G.求證:A,G,N三點(diǎn)共線.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知直線與拋物線沒(méi)有交點(diǎn);方程表示橢圓;若為真命題,試求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com