如圖所示,DB,DC是⊙O的兩條切線,A是圓上一點(diǎn),已知∠D=46°,則∠A= .
.67°
結(jié)合已知及圓的切線的性質(zhì)可求∠DBC=∠DCB,由DB,DC是⊙O的兩條切線可知∠DBC是圓的弦切角,且A是圓的圓周角
由弦切角定理可知,∠DBC=∠A,從而可求
解答:解:由圓的切線的性質(zhì)可知,DB=DC
∵∠D=46°
∴∠DBC=∠DCB=67°
∵DB,DC是⊙O的兩條切線
∴∠DBC是圓的弦切角,且A是圓的圓周角
由弦切角定理可知,∠DBC=∠A=67°
故答案為67°
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知圓C的圓心在軸上,曲線在點(diǎn)處的切線恰與圓C在點(diǎn)處相切,則圓C的方程為              

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

與圓的公共弦所在直線的方程為  

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題共12分) 已知兩圓,
求(1)它們的公共弦所在直線的方程;(2)公共弦長(zhǎng)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知⊙O的方程是x2+y2-2=0,⊙O′的方程是x2+y2-8x+10=0.由動(dòng)點(diǎn)P向⊙O和⊙O′所引的切線長(zhǎng)相等,求動(dòng)點(diǎn)P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

.一動(dòng)圓與兩圓⊙M:x2+y2=1和⊙N:x2+y2-8x+12=0都外切,則動(dòng)圓圓心的軌跡為____________________________________________________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

和圓的位置關(guān)系是_____

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

、已知兩圓相交于兩點(diǎn),則直線的方程是                        

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

和圓的位置關(guān)系是
A.內(nèi)切B.外離C.外切D.相交

查看答案和解析>>

同步練習(xí)冊(cè)答案