(本小題滿(mǎn)分10分)
如圖,在四棱錐中,底面ABCD為直角梯形,AB∥CD,∠BAD=90°,PA⊥平面ABCD,AB=1,AD=2,PA=CD=4,求二面角的余弦值.
二面角B-PC-A的余弦值為.
本小題采用向量法求二面角,先求出二面角兩個(gè)面的法向量,再求法向量的夾角,再根據(jù)法向量的夾角與二面角相等或互補(bǔ)來(lái)求解.
解:如圖建立空間直角坐標(biāo)系,則A(0,0,0),B(0,1,0),C(-2,4,0),D(-2,0,0),P(0,0,4),易證為面PAC的法向量,則

設(shè)面PBC的法向量,
,
所以
所以面PBC的法向量

因?yàn)槊鍼AC和面PBC所成的角為銳角,所以二面角B-PC-A的余弦值為.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿(mǎn)分12分)如圖,已知三棱柱的側(cè)棱與底面垂直,,,分別是,的中點(diǎn),點(diǎn)在直線(xiàn)上,且
(1)證明:無(wú)論取何值,總有
(2)當(dāng)取何值時(shí),直線(xiàn)與平面所成的角最大?并求該角取最大值時(shí)的正切值;
(3)是否存在點(diǎn),使得平面與平面所成的二面角為30º,若存在,試確定點(diǎn)的位置,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在三棱錐S—ABC中,SC⊥平面ABC,點(diǎn)P、M分別是SC和SB的中點(diǎn),設(shè)
PM=AC=1,∠ACB=90°,直線(xiàn)AM與直線(xiàn)SC所成的角為60°.
(I)求證:;(Ⅱ)求證:平面MAP⊥平面SAC;
( Ⅲ)求銳二面角M—AB—C的大小的余弦值;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題共12分)
如圖,已知四棱錐中,底面,四邊形是直角梯形,,,,

(1)證明:
(2)在線(xiàn)段上找出一點(diǎn),使平面,
指出點(diǎn)的位置并加以證明;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿(mǎn)分12分)
如圖,三棱柱ABC—A1B1C1中,底面為正三角形,側(cè)棱與底面垂直,D是BC的中點(diǎn),AA1=AB=1。

(1)  求證:A1C∥平面AB1D;
(2)  求點(diǎn)C到平面AB1D的距離。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

矩形中,⊥面,上的點(diǎn),且⊥面,交于點(diǎn).
(1)求證:;
(2)求證://面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

類(lèi)比平面幾何中的定理 “設(shè)是三條直線(xiàn),若,則”,得出如下結(jié)論:
①設(shè)是空間的三條直線(xiàn),若,則;
②設(shè)是兩條直線(xiàn),是平面,若,則;
③設(shè)是兩個(gè)平面,是直線(xiàn),若
④設(shè)是三個(gè)平面,若,則;
其中正確命題的個(gè)數(shù)是(    )  
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在直三棱柱ABC-A1B1C1中,AC=BC=2,AA1=2,∠ACB=900,M是AA1的中點(diǎn),N是BC1的中點(diǎn).

(1)求證:MN//平面A1B1C1
(2)求二面角B-C1M-C的平面角余弦值的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知平面和直線(xiàn)l,則內(nèi)至少有一條直線(xiàn)與l(   )
A.平行B.相交C.垂直D.異面

查看答案和解析>>

同步練習(xí)冊(cè)答案