【題目】中國古代數學著作《九章算術》中有一個這樣的問題:“某賈人擅營,月入益功疾(注:從第2月開始,每月比前一月多入相同量的銅錢,3月入25貫,全年(按12個月計)共入510貫“,則該人每月比前一月多入_________________貫,第12月營收貫數為_________________.
科目:高中數學 來源: 題型:
【題目】當我們所處的北半球為冬季的時候,新西蘭的惠靈頓市恰好是盛夏,因此北半球的人們冬天愿意去那里旅游,下面是一份惠靈頓機場提供的月平均氣溫統(tǒng)計表.
(月份) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
17.3 | 17.9 | 17.3 | 15.8 | 13.7 | 11.6 | 10.06 | 9.5 | 10.06 | 11.6 | 13.7 | 15.8 |
(1)根據這個統(tǒng)計表提供的數據,為惠靈頓市的月平均氣溫作出一個函數模型;
(2)當自然氣溫不低于13.7℃時,惠靈頓市最適宜旅游,試根據你所確定的函數模型,確定惠靈頓市的最佳旅游時間.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】十九大提出,加快水污染防治,建設美麗中國.根據環(huán)保部門對某河流的每年污水排放量(單位:噸)的歷史統(tǒng)計數據,得到如下頻率分布表:
將污水排放量落入各組的頻率作為概率,并假設每年該河流的污水排放量相互獨立.
(1)求在未來3年里,至多1年污水排放量的概率;(2)該河流的污水排放對沿河的經濟影響如下:當時,沒有影響;當時,經濟損失為10萬元;當時,經濟損失為60萬元.為減少損失,現有三種應對方案:
方案一:防治350噸的污水排放,每年需要防治費3.8萬元;
方案二:防治310噸的污水排放,每年需要防治費2萬元;
方案三:不采取措施.
試比較上述三種文案,哪種方案好,并請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若、是兩個相交平面,則在下列命題中,真命題的序號為( )
①若直線,則在平面內一定不存在與直線平行的直線.
②若直線,則在平面內一定存在無數條直線與直線垂直.
③若直線,則在平面內不一定存在與直線垂直的直線.
④若直線,則在平面內一定存在與直線垂直的直線.
A. ①③ B. ②③ C. ②④ D. ①④
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】給出下列命題:
①命題“若,則方程無實根”的否命題;
②命題“在中,,那么為等邊三角形”的逆命題;
③命題“若,則”的逆否命題;
④“若,則的解集為”的逆命題;
其中真命題的序號為( )
A.①②③④B.①②④C.②④D.①②③
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】我國古代數學名著《九章算術》中有云:“有木長三丈,圍之八尺,葛生其下,纏木兩周,上與木齊,問葛長幾何?”意思為:圓木長3丈,圓周為8尺,葛藤從圓木的底部開始向上生長,繞圓木兩周,剛好頂部與圓木平齊,問葛藤最少長幾尺(注:1丈即10尺)?該問題的答案為34尺.若圓木長為3尺,圓周為2尺,同樣繞圓木兩周剛好頂部與圓木平齊,那葛藤最少又是長( )尺?
A.34尺B.5尺C.6尺D.4尺
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了適應高考改革,某中學推行“創(chuàng)新課堂”教學.高一平行甲班采用“傳統(tǒng)教學”的教學方式授課,高一平行乙班采用“創(chuàng)新課堂”的教學方式授課,為了比較教學效果,期中考試后,分別從兩個班中各隨機抽取名學生的成績進行統(tǒng)計分析,結果如下表:(記成績不低于分者為“成績優(yōu)秀”)
分數 | |||||||
甲班頻數 | |||||||
乙班頻數 |
(Ⅰ)由以上統(tǒng)計數據填寫下面的列聯表,并判斷是否有以上的把握認為“成績優(yōu)秀與教學方式有關”?
甲班 | 乙班 | 總計 | |
成績優(yōu)秀 | |||
成績不優(yōu)秀 | |||
總計 |
(Ⅱ)現從上述樣本“成績不優(yōu)秀”的學生中,抽取人進行考核,記“成績不優(yōu)秀”的乙班人數為,求的分布列和期望.
參考公式:,其中.
臨界值表
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某電信公司為了加強新用5G技術的推廣使用,為該公司的用戶制定了一套5G月消費返流量費的套餐服務方案;當月消費金額不超過100元時,按消費金額的進行返還;當月消費金額超過100元時,除消費金額中的100元仍按進行返還外,若另超出100元的部分消費金額為A元,則超過部分按進行返還,記用戶當月返還所得流量費y(單位:元),消費金額x(單位:元)
(1)寫出該公司用戶月返還所得流量費的函數模型;
(2)如果用戶小李當月獲返還的流量費是12元,那么他這個月的消費金額是多少元?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,橢圓與一等軸雙曲線相交,是其中一個交點,并且雙曲線的頂點是該橢圓的焦點,,雙曲線的焦點是橢圓的左、右頂點,設為該雙曲線上異于頂點的任意一點,直線的斜率分別為,且直線和與橢圓的交點分別為、和、.
(1)求橢圓和雙曲線的標準方程;
(2)(i)證明:;
(ii)是否存在常數,使得恒成立?若存在,求的值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com