【題目】已知直線的方程為,其中.
(1)求證:直線恒過(guò)定點(diǎn);
(2)當(dāng)變化時(shí),求點(diǎn)到直線的距離的最大值;
(3)若直線分別與軸、軸的負(fù)半軸交于兩點(diǎn),求面積的最小值及此時(shí)直線的方程.
【答案】(1)見(jiàn)解析;(2)5;(3)見(jiàn)解析
【解析】試題分析:
(1)分離系數(shù)m,求解方程組可得直線恒過(guò)定點(diǎn);
(2)結(jié)合(1)的結(jié)論可得點(diǎn)到直線的距離的最大值是5;
(3)由題意得到面積函數(shù): ,注意等號(hào)成立的條件.
試題解析:
(1)證明:直線方程
可化為
該方程對(duì)任意實(shí)數(shù)恒成立,所以
解得,所以直線恒過(guò)定點(diǎn)
(2)點(diǎn)與定點(diǎn)間的距離,就是所求點(diǎn)到直線的距離的最大值,即
(3)由于直線過(guò)定點(diǎn),分別與軸, 軸的負(fù)半軸交于兩點(diǎn),
設(shè)其方程為,則
所以
當(dāng)且僅當(dāng)時(shí)取等號(hào),面積的最小值為4
此時(shí)直線的方程為
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某冷飲店只出售一種飲品,該飲品每一杯的成本價(jià)為3元,售價(jià)為8元,每天售出的第20杯及之后的飲品半價(jià)出售.該店統(tǒng)計(jì)了近10天的飲品銷(xiāo)量,如圖所示:設(shè)為每天飲品的銷(xiāo)量,為該店每天的利潤(rùn).
(1)求關(guān)于的表達(dá)式;
(2)從日利潤(rùn)不少于96元的幾天里任選2天,求選出的這2天日利潤(rùn)都是97元的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知?jiǎng)訄A與圓:,圓都相內(nèi)切,即圓心的軌跡為曲線;設(shè)為曲線上的一個(gè)不在軸上的動(dòng)點(diǎn),為坐標(biāo)原點(diǎn),過(guò)點(diǎn)作的平行線交曲線于,兩個(gè)不同的點(diǎn).
(1)求曲線的方程;
(2)試探究和的比值能否為一個(gè)常數(shù)?若能,求出這個(gè)常數(shù);若不能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】重慶市乘坐出租車(chē)的收費(fèi)辦法如下:
⑴不超過(guò)3千米的里程收費(fèi)10元; ⑵超過(guò)3千米的里程按每千米2元收費(fèi)(對(duì)于其中不足千米的部分,若其小于0.5千米則不收費(fèi),若其大于或等于0.5千米則按1千米收費(fèi)); 當(dāng)車(chē)程超過(guò)3千米時(shí),另收燃油附加費(fèi)1元. |
相應(yīng)系統(tǒng)收費(fèi)的程序框圖如圖所示,其中(單位:千米)為行駛里程,(單位:元)為所收費(fèi)用,用表示不大于的最大整數(shù),則圖中①處應(yīng)填( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在一次國(guó)際學(xué)術(shù)會(huì)議上,來(lái)自四個(gè)國(guó)家的五位代表被安排坐在一張圓桌,為了使他們能夠自由交談,事先了解到的情況如下:
甲是中國(guó)人,還會(huì)說(shuō)英語(yǔ).
乙是法國(guó)人,還會(huì)說(shuō)日語(yǔ).
丙是英國(guó)人,還會(huì)說(shuō)法語(yǔ).
丁是日本人,還會(huì)說(shuō)漢語(yǔ).
戊是法國(guó)人,還會(huì)說(shuō)德語(yǔ).
則這五位代表的座位順序應(yīng)為( )
A. 甲丙丁戊乙 B. 甲丁丙乙戊
C. 甲乙丙丁戊 D. 甲丙戊乙丁
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(Ⅰ)求的單調(diào)區(qū)間;
(Ⅱ)若曲線與有三個(gè)不同的交點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(Ⅰ)求的最小正周期和單調(diào)遞增區(qū)間;
(Ⅱ)說(shuō)明函數(shù)的圖像可由正弦曲線經(jīng)過(guò)怎樣的變化得到;
(Ⅲ)若是第二象限的角,求
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)求曲線在點(diǎn)處的切線方程和函數(shù)的極值:
(2)若對(duì)任意,都有成立,求實(shí)數(shù)的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com