【題目】如圖,已知P(x0 , y0)是橢圓C: =1上一點,過原點的斜率分別為k1 , k2的兩條直線與圓(x﹣x02+(y﹣y02= 均相切,且交橢圓于A,B兩點.

(1)求證:k1k2=﹣ ;
(2)求|OA||OB|得最大值.

【答案】
(1)

證明:由圓P與直線OA:y=k1x相切,

可得 = ,

即(4﹣5x02)k12+10x0y0k1+4﹣5y02=0,

同理,(4﹣5x02)k22+10x0y0k2+4﹣5y02=0,

即有k1,k2是方程(4﹣5x02)k2+10x0y0k+4﹣5y02=0的兩根,

可得k1k2= = =﹣


(2)

解:設(shè)A(x1,y1),B(x2,y2),聯(lián)立 ,

解得x12= ,y12= ,

同理,x22= ,y22= ,

(|OA||OB|)2=( + )( + ),

∴|OA||OB|=2

=2

當且僅當k1 時,取等號,

可得|OA||OB|的最大值為


【解析】(1)推導(dǎo)出k1 , k2是方程(4﹣5x02)k2+10x0y0k+4﹣5y02=0的兩根,由此能利用韋達定理能求出k1k2為定值;(2)設(shè)A(x1 , y1),B(x2 , y2),聯(lián)立 ,由此利用橢圓性質(zhì),結(jié)合已知條件運用基本不等式能求出|OA||OB|的最大值.
【考點精析】利用橢圓的標準方程對題目進行判斷即可得到答案,需要熟知橢圓標準方程焦點在x軸:,焦點在y軸:

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】某經(jīng)銷商計劃銷售一款新型的空氣凈化器,經(jīng)市場調(diào)研發(fā)現(xiàn)以下規(guī)律:當每臺凈化器的利潤為 x (單位:元, x 0 )時,銷售量 q(x) (單位:百臺)與 x 的關(guān)系滿足:若 x 不超過 20 , ;若 x 大于或等于180 ,則銷售量為零;當 20 ≤ x ≤180 時,( a , b 為實常數(shù)).

(Ⅰ)求函數(shù) q(x) 的表達式;

(Ⅱ)當 x 為多少時,總利潤(單位:元)取得最大值,并求出該最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一盒中裝有9張各寫有一個數(shù)字的卡片,其中4張卡片上的數(shù)字是1,3張卡片上的數(shù)字是2,2張卡片上的數(shù)字是3,從盒中任取3張卡片.

1)求所取3張卡片上的數(shù)字完全相同的概率;

2表示所取3張卡片上的數(shù)字的中位數(shù),求的分布列與數(shù)學期望.

(注:若三個數(shù)滿足,則稱為這三個數(shù)的中位數(shù)).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=|xex+1|,關(guān)于x的方程f2(x)+2sinαf(x)+cosα=0有四個不等實根,sinα﹣cosα≥λ恒成立,則實數(shù)λ的最大值為(
A.﹣
B.﹣
C.﹣
D.﹣1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在某校矩形的航天知識競賽中,參與競賽的文科生與理科生人數(shù)之比為1:3,且成績分布在范圍內(nèi),規(guī)定分數(shù)在80以上(含80)的同學獲獎,按文理科用分層抽樣的放發(fā)抽取200人的成績作為樣本,得到成績的頻率分布直方圖.

(Ⅰ)填寫下面的列聯(lián)表,能否有超過95%的把握認為“獲獎與學生的文理科有關(guān)”;

(Ⅱ)將上述調(diào)查所得的頻率視為概率,現(xiàn)從參賽學生中,任意抽取3名學生,記“獲獎”學生人數(shù)為,求的分布列及數(shù)學期望.

附表及公式:,其中

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)集合為下述條件的函數(shù)的集合:①定義域為;②對任意實數(shù),都有

1)判斷函數(shù)是否為中元素,并說明理由;

2)若函數(shù)是奇函數(shù),證明:

3)設(shè)都是中的元素,求證:也是中的元素,并舉例說明,不一定是中的元素.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點滿足,,且點的坐標為.

(1)求過點的直線的方程;

(2)試用數(shù)學歸納法證明:對于,點都在(1)中的直線上.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)= ﹣kx2(k∈R)有四個不同的零點,則實數(shù)k的取值范圍是(
A.k<0
B.k<1
C.0<k<1
D.k>1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,直棱柱ABC-中,D,E分別是ABBB1的中點,=AC=CB=AB.

)證明://平面

)求二面角D--E的正弦值.

查看答案和解析>>

同步練習冊答案