【題目】已知兩點A(-2,0),B(0,1),點P是圓(x-1)2+y2=1上任意一點,則△PAB面積的最大值是

【答案】
【解析】解:兩點A(-2,0),B(0,1),

∴BA的直線方程為:x-2y+2=0,

|AB|=

點P到直線AB的距離最大值為圓心到直線的距離d+r,圓(x-1)2+y2=1,其圓心為(1,0)

d= =

∴點P到直線AB的距離最大值為:

△PAB面積的最大值S= |AB| =

所以答案是:

【考點精析】根據(jù)題目的已知條件,利用直線與圓的三種位置關(guān)系的相關(guān)知識可以得到問題的答案,需要掌握直線與圓有三種位置關(guān)系:無公共點為相離;有兩個公共點為相交,這條直線叫做圓的割線;圓與直線有唯一公共點為相切,這條直線叫做圓的切線,這個唯一的公共點叫做切點.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)
(I)求函數(shù) 在點 處的切線方程;
(II)求函數(shù) 的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示的多面體中, 菱形, 是矩形, ⊥平面 , , .

(Ⅰ)異面直線 所成的角余弦值;
(Ⅱ)求證平面 ⊥平面 ;
(Ⅲ)在線段 取一點 ,當二面角 的大小為60°時,求 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某化工廠擬建一個下部為圓柱,上部為半球的容器(如圖圓柱高為 ,半徑為 ,不計厚度,單位:米),按計劃容積為 立方米,且 ,假設(shè)建造費用僅與表面積有關(guān)(圓柱底部不計 ),已知圓柱部分每平方米的費用為2千元,半球部分每平方米的費用為2千元,設(shè)該容器的建造費用為y千元.

(1)求y關(guān)于r的函數(shù)關(guān)系,并求其定義域;
(2)求建造費用最小時的 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知 的圓心為 的圓心為N,一動圓與圓M內(nèi)切,與圓N外切.
(1)求動圓圓心P的軌方跡方程;
(2)設(shè)A,B分別為曲線P與x軸的左右兩個交點,過點 的直線 與曲線P交于C,D兩點,若 ,求直線 的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】的部分圖象如圖所示.

(1)求函數(shù)的解析式;

(2)將的圖象向左平移個單位長度得到的圖象,若圖象的一個對稱軸為,求的最小值;

(3)在第(2)問的前提下,求函數(shù)上的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題:

①若,則;

已知,,且的夾角為銳角,則實數(shù) 的取值范圍是

③已知是平面上一定點,是平面上不共線的三個點,動點滿足,則的軌跡一定通過的重心;

④在中,,邊長分別為,則只有一解;

⑤如果ABC內(nèi)接于半徑為的圓,且

ABC的面積的最大值;

其中正確的序號為_______________________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在著名的漢諾塔問題中有三根針和套在一根針上的若干金屬片,按下列規(guī)則,把金屬片從一根針上全部移到另一根針上:①每次只能移動一個金屬片;②在每次移動過程中,每根針上較大的金屬片不能放在較小的金屬片上面.將n個金屬片從1號針移到3號針最少需要移動的次數(shù)記為f(n),則f(6)=(
A.31
B.33
C.63
D.65

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知向量a=cosωx+1,2sinωx,b=cosωx-,cosωx), ω>0.

(Ⅰ)當ωx≠kπ+,k∈Z時,若向量c=(1,0),d=(,0),且(a-c)∥(b+d),求4sin2ωx-cosx的值;

(Ⅱ)若函數(shù)f(x)=a·b的圖象的相鄰兩對稱軸之間的距離為,當x∈[],g時,求函數(shù)f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

同步練習(xí)冊答案