【題目】已知圓經(jīng)過點,,且它的圓心在直線上.

)求圓的方程;

)求圓關于直線對稱的圓的方程。

)若點為圓上任意一點,且點,求線段的中點的軌跡方程.

【答案】

【解析】

試題分析:()首先設出方程,將點坐標代入得到關于參數(shù)的方程組,通過解方程組得到參數(shù)值,從而確定其方程;()求出N(2,4)關于x-y+3=0的對稱點為(1,5),即可得到圓N關于直線x-y+3=0對稱的圓的方程;()首先設出點M的坐標,利用中點得到點D坐標,代入圓的方程整理化簡得到的中點M的軌跡方程

試題解析::()由已知可設圓心N(a,3a-2),又由已知得|NA|=|NB|,

從而有,解得:a=2

于是圓N的圓心N2,4),半徑

所以,圓N的方程為.(5分)

)N(2,4)關于x-y+3=0的對稱點為(1,5),

所以圓N關于直線x-y+3=0對稱的圓的方程為(9分)

)設Mx,y),D,則由C3,0)及M為線段CD的中點得:,解得又點D在圓N:上,所以有,

化簡得:

故所求的軌跡方程為.(13分)

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,直三棱柱ABC-A1B1C1底面ABC中,CA=CB=1BCA=90°,棱AA1=2MN分別是A1B1,A1A的中點。

1的長度;

2cos的值;

3求證:A1BC1M

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓,過點作直線與橢圓交于兩點.

1若點平分線段,試求直線的方程;

2設與滿足1中條件的直線平行的直線與橢圓交于兩點,與橢圓交于點,與橢圓交于點,求證:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】給出下列命題:

已知集合,則的充分不必要條件;

②“的必要不充分條件;

③“函數(shù)的最小正周期為的充要條件;

④“平面向量的夾角是鈍角的要條件是.

其中正確命題的序號是 .(把所有正確命題的序號都寫上)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】

(1)若求函數(shù)的單調(diào)區(qū)間;

(2)若,求證

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2016 年1 月1 日起全國統(tǒng)一實施全面兩孩政策.為了解適齡民眾對放開生育二胎政策的態(tài)度,某市選取后和后作為調(diào)查對象,隨機調(diào)查了位,得到數(shù)據(jù)如下表:

)以這個人的樣本數(shù)據(jù)估計該市的總體數(shù)據(jù),且以頻率估計概率,若從該市后公民中隨機抽取位,記其中生二胎的人數(shù)為,求隨機變量的分布列和數(shù)學期望;

)根據(jù)調(diào)查數(shù)據(jù),是否有 以上的把握認為“生二胎與年齡有關”,并說明理由:

參考數(shù)據(jù):

參考公式:,其中)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】《選修4—4:坐標系與參數(shù)方程》

已知直線l的參數(shù)方程為 t為參數(shù),若以直角坐標系xOy的O點為極點,Ox方向為極軸,選擇相同的長度單位建立極坐標系,得曲線C的極坐標方程為ρ=2cosθ-

1求直線l的傾斜角和曲線的直角坐標方程;

2若直線l與曲線C交于A,B兩點,設點,求.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】總體由編號為01,02,…,192020個個體組成.利用下面的隨機數(shù)表選取4個個體,選取方法從隨機數(shù)表的第1行第4列數(shù)由左到右由上到下開始讀取,則選出來的第4個個體的編號為(

1 78 16 65 71 02 30 60 14 01 02 40 60 90 28 01 98

2 32 04 92 34 49 35 82 00 36 23 48 69 69 38 74 81

A.10B.01C.09D.06

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

以直角坐標系的原點為極點,軸的非負半軸為極軸建立極坐標且兩坐標系取相同的長度單位.已知點的極坐標為,的極坐標方程為為曲線上的動點,到定點的距離等于圓的半徑

(1)求曲線的直角坐標方程;

(2)若過點的直線的參數(shù)方程為為參數(shù)),且直線與曲線交于、兩點,的值

查看答案和解析>>

同步練習冊答案