【題目】已知圓經(jīng)過點,,且它的圓心在直線上.
(Ⅰ)求圓的方程;
(Ⅱ)求圓關于直線對稱的圓的方程。
(Ⅲ)若點為圓上任意一點,且點,求線段的中點的軌跡方程.
【答案】(Ⅰ)(Ⅱ)(Ⅲ)
【解析】
試題分析:(Ⅰ)首先設出方程,將點坐標代入得到關于參數(shù)的方程組,通過解方程組得到參數(shù)值,從而確定其方程;(Ⅱ)求出N(2,4)關于x-y+3=0的對稱點為(1,5),即可得到圓N關于直線x-y+3=0對稱的圓的方程;(Ⅲ)首先設出點M的坐標,利用中點得到點D坐標,代入圓的方程整理化簡得到的中點M的軌跡方程
試題解析::(Ⅰ)由已知可設圓心N(a,3a-2),又由已知得|NA|=|NB|,
從而有,解得:a=2.
于是圓N的圓心N(2,4),半徑.
所以,圓N的方程為.(5分)
(Ⅱ)N(2,4)關于x-y+3=0的對稱點為(1,5),
所以圓N關于直線x-y+3=0對稱的圓的方程為(9分)
(Ⅲ)設M(x,y),D,則由C(3,0)及M為線段CD的中點得:,解得又點D在圓N:上,所以有,
化簡得:.
故所求的軌跡方程為.(13分)
科目:高中數(shù)學 來源: 題型:
【題目】如圖,直三棱柱ABC-A1B1C1底面△ABC中,CA=CB=1,∠BCA=90°,棱AA1=2M,N分別是A1B1,A1A的中點。
(1)求的長度;
(2)求cos(,)的值;
(3)求證:A1B⊥C1M。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓,過點作直線與橢圓交于兩點.
(1)若點平分線段,試求直線的方程;
(2)設與滿足(1)中條件的直線平行的直線與橢圓交于兩點,與橢圓交于點,與橢圓交于點,求證:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】給出下列命題:
①已知集合,則“”是“”的充分不必要條件;
②“”是“”的必要不充分條件;
③“函數(shù)的最小正周期為”是“”的充要條件;
④“平面向量與的夾角是鈍角”的要條件是“”.
其中正確命題的序號是 .(把所有正確命題的序號都寫上)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2016 年1 月1 日起全國統(tǒng)一實施全面兩孩政策.為了解適齡民眾對放開生育二胎政策的態(tài)度,某市選取后和后作為調(diào)查對象,隨機調(diào)查了位,得到數(shù)據(jù)如下表:
(Ⅰ)以這個人的樣本數(shù)據(jù)估計該市的總體數(shù)據(jù),且以頻率估計概率,若從該市后公民中隨機抽取位,記其中生二胎的人數(shù)為,求隨機變量的分布列和數(shù)學期望;
(Ⅱ)根據(jù)調(diào)查數(shù)據(jù),是否有 以上的把握認為“生二胎與年齡有關”,并說明理由:
參考數(shù)據(jù):
(參考公式:,其中)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】《選修4—4:坐標系與參數(shù)方程》
已知直線l的參數(shù)方程為 (t為參數(shù)),若以直角坐標系xOy的O點為極點,Ox方向為極軸,選擇相同的長度單位建立極坐標系,得曲線C的極坐標方程為ρ=2cos(θ-).
(1)求直線l的傾斜角和曲線的直角坐標方程;
(2)若直線l與曲線C交于A,B兩點,設點,求.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】總體由編號為01,02,…,19,20的20個個體組成.利用下面的隨機數(shù)表選取4個個體,選取方法從隨機數(shù)表的第1行第4列數(shù)由左到右由上到下開始讀取,則選出來的第4個個體的編號為( )
第1行 78 16 65 71 02 30 60 14 01 02 40 60 90 28 01 98
第2行 32 04 92 34 49 35 82 00 36 23 48 69 69 38 74 81
A.10B.01C.09D.06
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
以直角坐標系的原點為極點,軸的非負半軸為極軸建立極坐標,且兩坐標系取相同的長度單位.已知點的極坐標為,圓的極坐標方程為,若為曲線上的動點,且到定點的距離等于圓的半徑.
(1)求曲線的直角坐標方程;
(2)若過點的直線的參數(shù)方程為(為參數(shù)),且直線與曲線交于、兩點,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com