已知函數(shù),且處取得極值.
(1)求的值;
(2)若當(dāng)時(shí),恒成立,求的取值范圍;
(3)對任意的是否恒成立?如果成立,給出證明,如果不成立,請說明理由.
(1)(2)(3)不等式恒成立,證明:當(dāng)時(shí),有極小值時(shí),最小值為
,故結(jié)論成立.

試題分析:(1)           
處取得極值,

                經(jīng)檢驗(yàn),符合題意.       
(2)∵  
 
 
 
 
 
   
 
   

 
    
   
   
   
  
 

 
 
 
 
 
 
 
∴當(dāng)時(shí),有極大值    

時(shí),最大值為 
       故 
(3)對任意的恒成立.
由(2)可知,當(dāng)時(shí),有極小值
 
時(shí),最小值為
,故結(jié)論成立.
點(diǎn)評:將不等式恒成立問題轉(zhuǎn)化為求函數(shù)最值問題是此類題目的最常見的轉(zhuǎn)化思路,需引導(dǎo)學(xué)生加以重視
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某服裝廠某年1月份、2月份、3月份分別生產(chǎn)某名牌衣服1萬件、萬件、萬件,為了估測當(dāng)年每個(gè)月的產(chǎn)量,以這三個(gè)月的產(chǎn)品數(shù)量為依據(jù),用一個(gè)函數(shù)模型模擬該產(chǎn)品的月產(chǎn)量與月份的關(guān)系,模擬函數(shù)可選用函數(shù)(其中為常數(shù))或二次函數(shù)。又已知當(dāng)年4月份該產(chǎn)品的產(chǎn)量為萬件,請問用以上哪個(gè)函數(shù)作為模擬函數(shù)較好,并說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

定義在R上的函數(shù)滿足:的圖像關(guān)于軸對稱,并且對任意的,則當(dāng)時(shí),有(    )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)是定義在自然數(shù)集上的函數(shù),,且對任意自然數(shù),有,則         

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)是定義在R上的奇函數(shù),且對任意,當(dāng)時(shí),都有.
(1)求證:R上為增函數(shù).
(2)若對任意恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

寫出一個(gè)同時(shí)滿足下列條件的函數(shù)            

為周期函數(shù)且最小正周期為
是R上的偶函數(shù)
是在上的增函數(shù)
的最大值與最小值差不小于4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知函數(shù) 若,則_________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)某企業(yè)投入81萬元經(jīng)銷某產(chǎn)品,經(jīng)銷時(shí)間共60個(gè)月,市場調(diào)研表明,該企業(yè)在經(jīng)銷這個(gè)產(chǎn)品期間第個(gè)月的利潤(單位:萬元),為了獲得更多的利潤,企業(yè)將每月獲得的利潤投入到次月的經(jīng)營中,記第個(gè)月的當(dāng)月利潤率,例如:
(Ⅰ); (Ⅱ)求第個(gè)月的當(dāng)月利潤率;
(Ⅲ)該企業(yè)經(jīng)銷此產(chǎn)品期間,哪個(gè)月的當(dāng)月利潤率最大,并求該月的當(dāng)月利潤率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

是否存在實(shí)數(shù)a使函數(shù)上是增函數(shù)?若存在求出a的值,若不存在,說明理由。

查看答案和解析>>

同步練習(xí)冊答案